A Cluster-Based Approach for Semantic Similarity in the Biomedical Domain

Hisham Al-Mubaid and Hoa A. Nguyen
University of Houston-Clear Lake, Houston, TX 77058, USA
{hisham, nguyenh3308}@uhcl.edu

Abstract—We propose a new cluster-based semantic similarity/distance measure for the biomedical domain within the framework of UMLS. The proposed measure is based mainly on the cross-modified path length feature between the concept nodes, and two new features: (1) the common specificity of two concept nodes, and (2) the local granularity of the clusters. We also applied, for comparison purpose, five existing general English ontology-based similarity measures into the biomedical domain within UMLS. The proposed measure was evaluated relative to human experts’ ratings, and compared with the existing techniques using two ontologies (MeSH and SNOMED-CT) in UMLS. The experimental results confirmed the efficiency of the proposed method, and showed that our similarity measure gives the best overall results of correlation with human ratings. We show, further, that using MeSH ontology produces better semantic correlations with human experts’ scores than SNOMED-CT in all of the tested measures.

I. INTRODUCTION

The natural language processing (NLP) literature includes a number of approaches to measure the semantic similarity, or more generally, relatedness between two terms or concepts [1-4,7-9,11-15,17]. Measures of semantic similarity and relatedness can be used in applications such as sense disambiguation, information extraction and retrieval, classification and ranking, detection of redundancy, and detection and correction of malapropisms. In this paper, we investigate the semantic similarity measures that are based on ontology structure and propose a new cluster-based semantic similarity/distance measure. We apply these measures into the biomedical domain. We evaluated the proposed measure along with other existing ontology-based measures using the MeSH and SNOMED-CT thesauruses/ontologies, within UMLS framework [5,18]. The experimental results with two datasets of biomedical terms and two ontologies confirmed the efficiency of the proposed measure. The proposed measure \(\text{Sem} \) achieved the highest results of correlation with human scores in the two datasets using both ontologies.

UMLS: The Unified Medical Language System (UMLS) project started at the National Library of Medicine (NLM) in 1986 [5,18], with one of the objectives is to help interpret and understand medical meaning across systems [5]. It consists of three main knowledge sources: Metathesaurus (MeSH, SNOMED-CT thesauruses, etc.), Semantic Network, and SPECIALIST Lexicon & Lexical Tools [13].

MeSH: MeSH, stands for Medical Subject Headings, [5,19], is one of the source vocabularies used in UMLS. MeSH includes about 15 high-level categories, and each category is divided into subcategories and assigned a letter: A for Anatomy, B for Organisms and C for Diseases, and so on.

SNOMED-CT: SNOMED-CT, stands for Systemized Nomenclature of Medicine Clinical Term [5,6,18], was included in UMLS in May 2004 (2004AA) [5]. SNOMED-CT is a comprehensive clinical terminology [6], and the current version contains more than 360,000 concepts, 975,000 synonyms and 1,450,000 relationships organized into 18 hierarchies.

In this paper, we use term “concept node” to refer to a concept class represented as a node in the ontology and that contains a set of synonymous concepts. The similarity between two concepts that belong to the same node reaches maximum, and the similarity of two concepts is the similarity of the two concept classes (nodes) containing them.

II. SEMANTIC SIMILARITY

In this paper, we focus only on those semantic similarity measures that use ontology as primary information source.

A. Ontology-Structure-Based Measures

Most of the semantic similarity measures that are based on the structure of ontology are actually based on path length (shortest path length) between two concept nodes, and/or depths of concept nodes in the “IS A” hierarchy tree. Some of the WordNet-based measures are: Path length [13], Wu & Palmer [17], Leacock & Chodorow [7], and Li et al. [8]. Choi & Kim [2] proposed a semantic similarity measure in their work for solving the problem of topic distillation and applied it on yahoo category tree.

B. Information-Based Measures

The information-based measures use information content (IC) of concept nodes derived from the ontology hierarchy structure and corpus statistics. In WordNet-based measures, some information-based measures are: Resnik [14], Jiang & Conrath [4] and Lin [9].
III. METHOD FOR SEMANTIC SIMILARITY
The primitive approach to find the similarity/distance between two concept nodes is to find the shortest path length between them on the hierarchy tree (Rada et al. [13]). Let us consider, for example, a fragment of ontology showing two clusters as in Figure 1. The first cluster, A, contains concepts a1 and the second cluster, B, contains concepts b1. Depth of cluster A is 4 and depth of cluster B is 3 (by node counting). The path length between a2 and a6 is 3 using node counting. The path length between a1 and b1 is also 3. Thus, the similarity in these two cases is the same according to Path length measures. However, intuitively speaking, the similarity between a1 and b1 is less than the similarity between a2 and a6 as the latter two concepts (a2 & a6) lie at a lower level in the hierarchy and share more information. Thus, path length-based measures such as Path length [13] and Leacock & Chodorow [7] give the same similarity value for these two pairs while the measure of Wu & Palmer [17] uses the depth feature only. Therefore, we should take the specificity of concepts into account by using the depths of the concept nodes. The least common subsumer (LCS) of two concept nodes determines the common specificity of two concept nodes (e.g., LCS(a2,a6)=a1 & LCS(a1,b1)=r), therefore we use LCS for computing common specificity of two concept nodes. Furthermore, local density such as link strength/weight also affects the similarity. One way of measuring the local density is using information content of concepts based on corpus statistic [4,8,9,15]. And since there is no standard corpus in biomedical domain, we use only ontology-based corpus statistic [4,8,9,15].

We define the specificity of a concept c in cluster C as

\[\text{spec}(c) = \frac{\text{depth}(c)}{\text{depth}(C)} \]

where depthC is the depth of cluster C, and spec(c) ∈ [0,1].

We notice that spec(c) = 1 when the concept c is a leaf node in the cluster C. Then, in Figure 1, the specificity of a3 and b3, is calculated as follows:

\[\text{spec}(a_3) = \frac{3}{4} = 0.75 \]
\[\text{spec}(b_3) = \frac{3}{3} = 1.00 \]

Thus, the specificity of b3 (1.00) is more than specificity of a3 (0.75), even though their depths are equal. Thus, b3 has more specificity within its cluster than a3 as it lies further down towards the bottom in its cluster. Therefore, we should take into account the local granularity of clusters as a feature that most existing measures that use ontology structure as primary information source do not take it into consideration.

IV. THE PROPOSED SEMANTIC MEASURE

Before discussing the details of the proposed approach, we present our rules and assumptions to be satisfied in the proposed measure.

A. Rules and Assumptions

We want to combine all the semantic features discussed above in one measure in an effective and logical way. We summarize our intuitive rules and assumptions in the following:

Rule R1: The semantic similarity scale system shows (reflects) the degree of similarity of pairs of concepts comparably in one cluster or in cross-cluster. This rule ensures that the mapping of cluster 1 to cluster 2 does not deteriorate the similarity scale of any cluster.

Rule R2: The semantic similarity must obey local cluster’s similarity rule as follows:

Rule R2.1: The shorter the distance between two concept nodes in the hierarchy tree, the more they are similar.

Rule R2.2: Lower level pairs of concept nodes are semantically closer (more similar) than higher level pairs.

Rule R2.3: The maximum similarity is reached when the two concept nodes are the same node in the hierarchy tree.

Before presenting the details of the proposed measure, we present and explain our assumptions about the semantic law function:

Assumption A1: Logarithm functions are the universal law of semantic distance.

Exponential-decay functions are universal law of stimulus generalization for psychological sciences [16]. We use logarithm (inverse of exponentiation) for semantic distance. We argue that non-linear combination approach is the optimum approach for combining semantic features. Rule R2.3 shows that when the two concept nodes are the same node (i.e. they are identical or synonymous), the semantic similarity must reach highest similarity regardless of other features, and so, we should use non-linear approach to combine the features. Therefore, we need another assumption.

Assumption A2: Non-linear function is the universal combination law of semantic similarity features.

B. New Feature: Common Specificity Feature

Besides the path length feature, we use in our measure the depth of concept nodes effectively to improve performance. The least common subsumer (LCS) node of two concepts C1 and C2 determines the common specificity of C1 and C2 in the cluster. So we measure the specificity of two concepts by finding the depth of their LCS node and then scaling this depth by the depth D of the cluster as follows:

\[\text{CSpec}(C_1,C_2) = D - \text{depth}(\text{LCS}(C_1,C_2)), \]

(2)
where D is the depth of the cluster. Thus the CSpec(C1, C2) feature determines the "common specificity" of two concepts in the cluster. The smaller the common specificity value of two concept nodes, the more they share information, and thus the more they are similar.

C. Single Cluster Similarity

In single cluster, the local granularity of the cluster is not considered as there is only one single cluster. We have two features to combine: Path length and the Common specificity given by Eq.(2). When the two concept nodes are the same node then path length will be 1 (using node counting), and so the semantic distance value must reach the minimum regardless of CSpec feature by rule R2.3 (recall the semantic distance is the inverse of semantic similarity). Therefore, we use product of semantic distance features for combination of features. By applying Rules R1, R2 and the two assumptions, the proposed measure for features to combine: Path length and the Common specificity feature.

\[
\text{Sim}(C_1, C_2) = \alpha \times (\text{Path} - 1) + \beta \times (\text{CSpec}) + k,
\]

where \(\alpha > 0\) and \(\beta > 0\) are contribution factors of two features; k is a constant; LCS is the least common subsumer of two concepts; and Path is the path length of the shortest path between the two concept nodes. To insure the distance is positive and the combination is non-linear, k must be greater or equal to one (\(k \geq 1\)). We use \(k = 1\) in our experiments. When two concept nodes have path length of 1 (\(\text{Path} = 1\)) using node counting (i.e., they are in the same node in the ontology), they have a semantic distance (Sem) equals to zero (i.e., maximum similarity) regardless of common specificity feature.

D. Cross-Cluster Semantic Similarity

In cross-cluster semantic similarity, to measure the similarity between two concepts (\(C_1\) & \(C_2\)), there are four cases depending on the positions of the two concept nodes within the clusters of the ontology. Let us assume that the cluster that has the largest depth is the main cluster (call it the primary cluster) on which the semantic features from all other clusters will be scaled to this cluster's scale-level. Let us, further, call all other remaining cluster secondary clusters. Then, we have four cases as follows:

Case 1: Similarity within the Primary Cluster:

If the two concept nodes occur in the primary cluster then we treat this case as similarity within single cluster Eq.(3) discussed in section IV(C).

Case 2: Cross-Cluster Similarity:

In this case, one of the two concept nodes belong to the primary cluster while the other is in a secondary cluster, and the LCS of two concept nodes is the global root node, which belongs to the two clusters. This technique does not affect the scale of the CSpec feature of the primary cluster. The common specificity is then given as:

\[
\text{CSpec}(C_1, C_2) = \text{CSpec}_{\text{primary}} = D_{\text{primary}} - 1,
\]

where \(D_{\text{primary}}\) is the depth of the primary cluster. The root is the LCS of the two concept nodes in this case. The path between the two concept nodes passes through two clusters having different granularity degrees. The portion of the path length that belongs to the secondary cluster is in scale of granularity different from that of the primary cluster, and thus, we need to convert it (level it) into primary cluster scale-level as follows.

![Figure 1. A fragment of two clusters in ontology](image)

The Cross-Cluster Path length Feature: The path length between two concept nodes (\(c_1\) & \(c_2\)) is computed by adding up the two shortest path lengths from the two nodes to their LCS node (their LCS is the root). For example, in Figure 1, for the two concept nodes (\(a_3, b_3\)), the LCS is the root \(r\). So, we measure the path length between \(a_3\) and \(b_3\) as:

\[
\text{Path}(C_1, C_2) = d_1 + d_2 - 1
\]

such that: \(d_1 = d(a_3, r)\) and \(d_2 = d(b_3, r)\), where \(d(a_3, r)\) is the path length from the root \(r\) to node \(a_3\); and similarly \(d(b_3, r)\) is the path length from \(r\) to \(b_3\).

Notice that the root node is counted twice, so we subtract one in Eq.(5). We notice here that the densities or granularities of the two clusters are in different scales. Then, we want to scale the portion of the path length in the secondary cluster into the primary cluster’s scale-level. The cluster containing \(a_3\) has higher depth, and then it’s the primary cluster, and the cluster containing \(b_3\) is the secondary. The granularity rate of the primary cluster over the secondary cluster for the common specificity feature is:

\[
\text{CSpecRate} = \frac{D_1 - 1}{D_2 - 1}
\]

where \((D_1 - 1)\) and \((D_2 - 1)\) are maximum common specificity values of the primary and secondary clusters respectively. The granularity rate, PathRate, of path length feature for the primary cluster over the secondary cluster is given by:

\[
\text{PathRate} = \frac{2D_1 - 1}{2D_2 - 1}
\]

where \((2D_1 - 1)\) and \((2D_2 - 1)\) are maximum path values of any two nodes in the primary and secondary clusters.
respectively. Following Rule R1, we convert d_2 in Eq.(5) to the primary cluster as follows:

$$d'_2 = \text{PathRate} \times d_2$$

(8)

This new path length d'_2 reflects path length of the second concept to the LCS relative to primary cluster’s path length feature scale. Applying Eq.(8), we obtain path length between 2 concept nodes in primary cluster scale as follows:

$$\text{Path}(C_1, C_2) = d_1 + \text{PathRate} \times d_2 - 1$$

(9)

$$\text{Path}(C_1, C_2) = d_1 + \frac{2D_1 - 1}{2D_2 - 1} \times d_2 - 1$$

(10)

Finally, the semantic distance between two concept nodes is given as follows:

$$\text{CSpec}(C_1, C_2) = D_{\text{primary}} - 1$$

(11)

$$\text{Sem}(C_1, C_2) = \log\left(\frac{\text{Path} - 1}{\text{Path}} \times (\text{CSpec})^\alpha + k\right)$$

(12)

Case 3: Similarity within a Single Secondary Cluster

The third case is when the two concept nodes are in a single secondary cluster. Then the semantic features, in this case, must be converted to primary cluster’s scales for the two features, Path and CSpec, as follows:

$$\text{Path}(C_1, C_2) = \text{Path}(C_1, C_2)_{\text{secondary}} \times \text{PathRate}$$

(13)

$$\text{CSpec}(C_1, C_2) = \text{CSpec}(C_1, C_2)_{\text{secondary}} \times \text{CSpecRate}$$

(14)

$$\text{Sem}(C_1, C_2) = \log\left(\frac{\text{Path} - 1}{\text{Path}} \times (\text{CSpec})^\alpha + k\right)$$

(15)

where Path$(C_1, C_2)_{\text{secondary}}$ and CSpec$(C_1, C_2)_{\text{secondary}}$ are the Path and CSpec between C_1 & C_2 in the secondary cluster.

Case 4: Similarity within Multiple Secondary Clusters

The fourth case occurs when the two concept nodes are in two different secondary clusters. In this case, one of the secondary clusters acts temporarily as a primary cluster to calculate the semantic features (path and CSpec) using cross-cluster approach as in Case 2 above. Then, the semantic distance is computed using Case-3 to scale the features (again) to the scale-level of the primary cluster.

V. EXPERIMENTS AND RESULTS

A. Datasets

There are no standard human rating datasets for semantic similarity in biomedical domain. To evaluate our methods, however, we used a (published) dataset of 30 concept pairs from Pedersen et al. [12], (we call it Dataset 1) which was annotated by 3 physicians and 9 medical index experts. Each pair was annotated on a 4-point scale: practically synonymous, related, marginally related, and unrelated. For space limitation, Table 1 contains only the first 10 pairs of this dataset. The average correlation between physicians is 0.68, and between experts is 0.78. Because the experts are more than the physicians, and the agreement between experts (0.78) is higher than the correlation between physicians (0.68), we can assume that the experts’ rating scores are more reliable than the physicians’ rating scores, and so we use experts’ scores in our experiments.

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Concept 2</th>
<th>Phys.</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal failure</td>
<td>Kidney failure</td>
<td>4.0000</td>
<td>4.0000</td>
</tr>
<tr>
<td>Heart</td>
<td>Myocardium</td>
<td>3.3333</td>
<td>3.0000</td>
</tr>
<tr>
<td>Stroke</td>
<td>Infarct</td>
<td>3.0000</td>
<td>2.7778</td>
</tr>
<tr>
<td>Abortion</td>
<td>Miscarriage</td>
<td>3.0000</td>
<td>3.3333</td>
</tr>
<tr>
<td>Delusion</td>
<td>Schizophrenia</td>
<td>3.0000</td>
<td>2.2222</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>Pulmonary edema</td>
<td>3.0000</td>
<td>1.4444</td>
</tr>
<tr>
<td>Metastasis</td>
<td>Adenocarcinoma</td>
<td>2.6667</td>
<td>1.7778</td>
</tr>
<tr>
<td>Calcification</td>
<td>Stenosis</td>
<td>2.6667</td>
<td>2.0000</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Stomach cramps</td>
<td>2.3333</td>
<td>1.3333</td>
</tr>
<tr>
<td>Mitral stenosis</td>
<td>Atrial fibrillation</td>
<td>2.3333</td>
<td>1.3333</td>
</tr>
</tbody>
</table>

The second dataset we used (we call it Dataset 2) contains 36 biomedical (MeSH) term pairs [3]. The human scores in this dataset are the average evaluated scores of reliable doctors. Table 2 contains the first 10 pairs of this dataset. We used the UMLSKS browser [18] for SNOMED-CT, and MeSH Browser [19] for MeSH to get information on the terms in the two datasets.

B. Experiments and Results

In the experiments, we assumed that the two features contribute equally to semantic similarity (i.e., $\alpha = \beta = 1$) and conducted comparisons with four other structure-based semantic similarity measures. All the measures use node counting for path length and for depth of concept nodes except Li et al measure which uses edge/link approach [8].

<table>
<thead>
<tr>
<th>Measure</th>
<th>Dataset 1 (rank)</th>
<th>Dataset 2 (rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Length</td>
<td>0.744 (5)</td>
<td>0.254 (5)</td>
</tr>
<tr>
<td>Wu & Palmer</td>
<td>0.794 (4)</td>
<td>0.296 (4)</td>
</tr>
<tr>
<td>Leacock& Chodorow</td>
<td>0.857 (2)</td>
<td>0.431 (2)</td>
</tr>
<tr>
<td>Choi & Kim</td>
<td>0.725 (6)</td>
<td>0.152 (6)</td>
</tr>
<tr>
<td>Li et al.</td>
<td>0.852 (3)</td>
<td>0.371 (3)</td>
</tr>
<tr>
<td>Sem (proposed)</td>
<td>0.863 (1)</td>
<td>0.665 (1)</td>
</tr>
<tr>
<td>Average</td>
<td>0.806</td>
<td>0.362</td>
</tr>
</tbody>
</table>

Table 1. Dataset 1: first 10 medical term pairs with physicians’ and experts’ scores

Table 2. Dataset 2: first 10 medical term pairs with human scores

Table 3. Absolute values of correlations with human judgments for all measures on 29 pairs of Dataset 1
Table 4. Absolute values of correlation with human judgments for all measures on 34 pairs of Dataset 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>Dataset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MeSH (rank)</td>
</tr>
<tr>
<td>Path Length</td>
<td>0.765 (5)</td>
</tr>
<tr>
<td>Wu & Palmer</td>
<td>0.811 (4)</td>
</tr>
<tr>
<td>Leacock & Chodorow</td>
<td>0.820 (3)</td>
</tr>
<tr>
<td>Choi & Kim</td>
<td>0.673 (6)</td>
</tr>
<tr>
<td>Li et al.</td>
<td>0.830 (1)</td>
</tr>
<tr>
<td>Sem (proposed)</td>
<td>0.825 (2)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
</tbody>
</table>

Out of the 30 pairs of Dataset 1, we were able to find only 25 pairs in MeSH, and 29 pairs in SNOMED-CT. For the four pairs that were not found in MeSH and found in SNOMED-CT, we calculated average similarity of the most related concepts to each one of them, so we have 29 pairs in MeSH and SNOMED-CT in total. We also found 34 pairs out of the 36 pairs of Dataset 2 in SNOMED-CT, so we use only these 34 pairs in the experiments. Table 3 and Table 4 shows the correlation results with human rating scores experimented on MeSH and SNOMED-CT using Dataset 1 and Dataset 2.

C. Discussion

Tables 3 and 4 show that the proposed measure achieves the best correlations with human ratings and ranks #1 in almost all experiments with two ontologies. These results confirm the efficiency of our proposed measure and the 'goodness' of the new features. If we take the average correlation of all experiments, for each measure, we find that Sem achieves 23.9% higher that the average of the other measures. Moreover, we notice that by testing with Dataset 1 using SNOMED-CT (Table 3) most structure-based measures perform very low except Sem because the specificity (granularity) of SNOMED-CT is much more than that of MeSH. So our measure, by using specificity feature, significantly outperforms the other five measures. We observe that with Dataset 1, all measures get the same ranks in both MeSH and SNOMED-CT (Table 3). Another observation is that both Path length and Choi & Kim maintain their ranks in both ontologies and in the two datasets. The average correlations of all measures in Table 3 and Table 4 show that MeSH gives higher correlations with human scores than SNOMED-CT, that is, all measures perform better in MeSH than in SNOMED-CT.

VI. CONCLUSION

This paper presents a new ontology-based semantic similarity measure as a cluster-based approach. The proposed measure was evaluated in the biomedical domain using two datasets of biomedical term pairs and two different ontologies (MeSH & SNOMED-CT) within the UMLS. The main contribution of this paper is the new measure with new features (common specificity and local granularity) that are combined non-linearly in the semantic similarity measure. The experimental results have proven the efficiency of the proposed measure and the new features relative to human judgments and compared with five other semantic measures. Compared with other measures, the proposed measure produced the best overall correlation result with human judgments in both datasets and in two ontologies. The experimental results demonstrated, further, that MeSH ontology produces better semantic similarity correlations with human ratings than SNOMED-CT over most of the tested measures.

REFERENCE