Cover and composition of ground vegetation affect animal distributions and abundance by influencing habitat selection and providing critical resources for survival and reproduction (Daubenmire 1959; Rotenberry and Wiens 1980). It is therefore important to use sampling techniques that yield unbiased or nearly unbiased estimates of vegetation cover and composition to avoid misleading conservation recommendations (Korb et al. 2003). Traditional methods for measuring ground cover and composition are usually based on the Daubenmire (1959) technique, in which observers visually estimate either percent cover or percent cover categories (e.g., 0–5, 5–25, 25–50, 50–75, 75–95, and 95–100%). However, subjective methods based on visual estimation are prone to observer bias (Stohlgren et al. 1998) and are not repeatable (i.e., different observers will almost certainly record different measurements for the same quantity; Kercher et al. 2003). Published estimates of observer bias affecting visual estimation have ranged from 13% to 90% variance, depending on percent cover category (Hatton et al. 1986; Kennedy and Addison 1987) and plot size (Klime 2003).

There have been a number of attempts to account for observer bias in visual estimation techniques, but none have completely removed subjectivity. Tilman’s technique (1997) uses visual aids, such as cardboard cutouts of specific shapes and sizes to improve estimates. However, interpretation of these cutouts is still subject to bias. Others have used known levels of ground cover to train observers (Anderson and Kothmann 1982), but training alone will also not completely remove observer bias (Sykes et al. 1983). Recent advances in Geographic Information System (GIS) and image analysis software and technology offer potential for using digital images of habitat to objectively quantify ground cover and composition of vegetation in a repeatable and timely manner. Here we evaluate the use of copyrighted image analysis software, eCognition (Definiens Imaging, GmbH, München, Germany), for analyzing digital photographs of vegetation to quantify percent ground cover as part of a grassland bird study in northwest Arkansas during 2003.

Methods

Digital photos of vegetation within nest plots

We located nests of grassland birds by dragging a 30 m rope through the grass to flush individuals from their nests (Higgins et al. 1969). Immediately after a nest was...
We imported digital images into eCognition as JPEG files (2160 X 1440) and applied a new technique known as object-based image analysis. This involved two steps: image segmentation and classification based on fuzzy logic (ie degree of membership of segments to a category).

Image segmentation grouped pixels in each image into objects or segments based on three parameters: scale, color, and shape. The scale parameter was the expression of the allowed level of heterogeneity of the resulting segments (the higher the scale parameter, the higher the level of heterogeneity), whereas color and shape parameters determined how pixels in the digital image were to be grouped. For example, if the user chose a setting of 40% for the color parameter and a setting of 60% for the shape parameter, then the resulting segments would be based more on shape than on color.

The shape parameter was defined by two subparameters: smoothness and compactness. This allowed segments in images to be divided into categories based on similarity and continuity of neighboring pixels. These segments could be further classified into user-defined categories such as vegetation types.

We created segmented objects in the images by analyzing and merging neighboring objects, based on smoothness and compactness, with a scale parameter of 25 (Baatz et al. 2003). There is no method for objectively selecting the best combination of parameters for segmentation (Baatz et al. 2003). The user must search for the most appropriate combination in a repeatable manner; we therefore adjusted these attributes in a stepwise fashion on one image and examined results from each combination by overlaying the segmented image onto the photograph. This allowed us to determine the combination of parameters that created the best groupings of pixels (segments) for separating different types of vegetation.

The best combination of scale, color, and shape parameters had been established, this was applied to all 90 images because they each had similar spatial resolutions (Baatz et al. 2003). We used an error assessment procedure (see below) to validate the subjectively chosen segmentation parameters.

First, to categorize vegetation segments, we created a classification scheme or “class hierarchy” in eCognition which quantified percentages of five vegetational categories (grass, forbs, shrub, litter, and bare ground). Grass was more difficult to classify than other categories because of shading; we therefore separated grass into shaded and non-shaded subclasses of the total grass area. Forbs were defined as any non-woody, herbaceous vegetation; shrubs were all woody plants (including saplings) and structurally similar non-woody plants; and litter was any dead vegetation detached from plants and mixed in with living material. These classes within eCognition were defined based on 90 to 120 sampled segments per vegetation class in each image for a total of 450 to 600 samples per image. Small portions of objects such as the pole and/or our feet were in about 20% of our images, so we visually identified their boundaries, manually separated them into their own categories, and adjusted vegetational cover estimates for each image by recomputing the percentages based on the reduced area.

eCognition then used fuzzy logic to place each segment into an appropriate class, based on its similarity in scale, color, and shape relative to the user-defined segment samples for each class. Fuzzy logic quantifies the degree of membership of each segment to each category on a scale from 0 to 1 rather than categorizing a segment as either a

Image 1. A photographic technique for measuring percent ground cover of vegetation used in nine fields in northwest Arkansas during 2003. A Kodak DC4800 Zoom Digital Camera mounted on a telescoping pole at a height of 1.5 m was used to photograph an approximately 2 m² area centered on the nest.
Figure 2. (a) A 3.1 megapixel digital photograph of a vegetation plot in a hayfield in northwest Arkansas. (b) Image classified into vegetation categories: red = grass (45%); dark blue = forbs (25%); light blue = litter (18%); and green = shrubs (12%).
ments when grass cover was >80% (Figure 3). When grass cover was <80%, KIA values ranged from 0.80 to 1.00.

Overall, images from artificial benchmark plots had KIA values ranging from 0.94 to 0.97 (Table 2). This means that for each benchmark image, at least 94% of the segments were classified correctly. Grass was underestimated by eCognition in all four benchmark images by a maximum of 4%. Shrub and forb cover was overestimated by the program in all four benchmark images by a maximum of 3%. Litter was underestimated in the 25%, 50%, and 75% cover images by a maximum of 4%, but was underestimated in the 100% cover image by 2% (Table 2). Among benchmark images, KIA values for each vegetation category were greater than 80%, suggesting that our classification schemes had high accuracy (Congalton 1996).

Table 1. Estimates of average (SE, range) percent ground cover of vegetation in plots surrounding grassland bird nests (n = 90) and average (SE, range) KIA for each vegetation category from each nest image.

<table>
<thead>
<tr>
<th>Vegetation category</th>
<th>eCognition cover estimates</th>
<th>KIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Grass</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Shrub</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Forbs</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Litter</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

The KIA quantified the percent of a randomly sampled set of segments that were correctly classified in each image.

Discussion

Recent advances in digital photography and image analysis software provide new opportunities for improved vegetation data collection and analysis. Digital cameras provide high resolution pictures that can be quickly transferred to a computer for analysis. Previous photographic techniques, based on 35-mm cameras, involved scanning and enlargement of prints with potential loss in resolution (De Becker and Mahler 1986; Neeser et al. 2000). These techniques also required a tripod (De Becker and Mahler 1986) or a hydraulic boom (Neeser et al. 2000), which may be much more disruptive to habitat than the telescoping pole described above. Object-based image analysis programs, such as eCognition, allow pixels to be grouped into objects and then classified based on user-defined classes. Other remote sensing software can separate objects, but images need to be transferred to other programs for classification (Congalton 1996). eCognition also allows for fine scale segmentation of objects such as leaves or stems on plants which can then be separated into different classes, resulting in fine-scale estimates of percent ground cover of various categories. Previous techniques have been useful for estimating presence, absence, or biomass of vegetation, but have not been able to distinguish between amounts of several different vegetation types (e.g. Masubuchi et al. 2000; Deca-gon Devices Inc 2002).

The innovative use of eCognition described here allowed us to classify objects on a very small scale (e.g. blades of grass). Traditional uses of the program involve remote sensing datasets on larger scales (e.g. to classify different land uses within a large landscape-level matrix; Baatz et al. 2003). Further, KIA values are typically based on datasets from several images, which are collected independently and then combined (geo-referenced so that independent images line up). KIA values in these circumstances are sensitive to geo-referenced data and could be biased (Congalton 1996). However, we generated KIA values from a single image of a small area, so the estimations were not prone to the bias observed in traditional applications.

Overall, segments within our classified nest images of nest vegetation plots agreed strongly with actual images. The low level of error (an average of ~5.5%) may have
be due to vegetation categories having segments of similar shape and/or color (eg shrub segments may have been similar in shape and color to living forb or grass segments). Some forb segments may have been misclassified as shrubs, resulting in lower shrub KIA values. Misclassification of segments may increase with increased cover of similar vegetation types (ie shrubs and forbs) of similar proportions. However, correct classification may be greater in seasons with higher color variability (eg more forbs flower in spring or vegetation may change color in the fall). Observers using visual estimation techniques may also encounter these discrepancies. Nonetheless, it is very difficult to reliably quantify error in visual estimations, whereas we were able to quantify error relatively easily with eCognition.

The strengths of the approach described here are objectivity and the ability to evaluate classification accuracy. Approximations from visual estimation techniques of low cover classes typically have much higher error rates (> 51%; Kennedy and Addison 1987). Also, it is difficult to evaluate subjective components of visual estimation techniques, but in our technique the selection of segmentation parameters and selection of samples for defining classes, among other factors, were validated by the high KIA values (≥ 80%; Congalton 1996).

The use of eCognition to classify digital images of ground plots provides a repeatable, minimally disruptive, and relatively non-subjective method for estimating percent ground cover with estimates of classification accuracy. Field measurements can be performed quickly, thereby minimizing disturbance to wildlife and damage to vegetation. Continued improvements in image classification software should lead to more accurate estimators of ground cover.

Acknowledgements

We are grateful to the Arkansas Game and Fish Commission (AGFC) and the USGS for funding. The Arkansas Cooperative Fish and Wildlife Research Unit is jointly supported by USGS, Arkansas Game and Fish Commission, University of Arkansas, and Wildlife Management Institute. We also thank D Krementz, N Myatt, S Coulter, S Lehnen, J Gentry, G Manning, L Moore, K Rowe, R Ahlert, R Odegard, A James, T Rotenberry, H Birch, J Neal, F Kirk, B Orr, B Shofer, P Hornsby, and C Butcher. Finally, we gratefully acknowledge the assistance of our field technicians: R Barnhill, E Brothers, J Millikin, C Morris, N Schubert, and S Spurrer. Field methods used in this study were approved by the Institutional Animal Care and Use Committee at the University of Arkansas (protocol #02030).

References

Higgins KF, Kirsch LM, and Ball Jr IJ. 1969. A cable-chain device

www.frontiersinecology.org © The Ecological Society of America
Kennedy KA and Addison PA. 1987. Some considerations for the
use of visual estimates of plant cover in biomonitoring. J
Ecology 75: 151–57.
Kercher SM, Frieswyk CB, and Zedler JB. 2003. Effects of sampling
teams and estimation methods on the assessment of plant
Klime L. 2003. Scale-dependent variation in visual estimates of
Korb JE, Covington WW, and Fulé PZ. 2003. Sampling techniques
influence understory plant trajectories after restoration: an exam-
by the stereophonic image analysis. Proceedings of the 21st
Asian Conference on Remote Sensing; 4–8 December 2000;
Taipei, Taiwan.
Neese C, Martin AR, Juroszek P, and Mortensen DA. 2000. A
comparison of visual and photographic estimates of weed bio-
mass and weed control. Weed Technol 14: 586–90.
Rotenberry JT and Wiens JA. 1980. Habitat structure, patchiness,
and avian communities in North American steppe vegetation:
Stohlgren TJ, Bull KA, and Orsuki Y. 1998. Comparison of range-
land vegetation sampling techniques in the central grasslands. J
Range Manage 51: 164–72.
Sykes JM, Horrill AD, and Mountford MD. 1983. Use of visual
cover assessments as quantitative estimators of some British
Tilman D. 1997. Community invisibility, recruitment limitation,

TAKE THIS JOURNAL TO YOUR LIBRARIAN, PLEASE

Are you enjoying this issue of Frontiers?
If your library had a subscription, colleagues and students could enjoy it too.
Please consider recommending Frontiers in Ecology and Environment to your library.
Clip or copy the form below. Thank you for your support.

Library Recommendation Form

To Acquisition Librarian, Serials

From __________________________
Dept __________________________

__

Signature __________________________ Date __________________________

I recommend the library subscribe to: Frontiers in Ecology and the Environment (ISSN 1540-9295)
To request a free sample issue of Frontiers in Ecology and the Environment, call (301) 588-4691 or email Sika Dunyoh at sika@esa.org. Order Frontiers by contacting ESA Headquarters at (202) 833-8773, online at www.esa.org, or through your subscription agent.