Introduction to SSL

This document introduces the Secure Sockets Layer (SSL) protocol. Originally
developed by Netscape, SSL has been universally accepted on the World Wide Web for

authenticated and encrypted communication between clients and servers.

The new Internet Engineering Task Force (IETF) standard called Transport Layer
Security (TLS) is based on SSL. This was recently published as an IETF Internet-Dralft,
The TLS Protocol Version 1.0. Netscape products will fully support TLS.

This document is primarily intended for administrators of Netscape server products, but
the information it contains may also be useful for developers of applications that
support SSL. The document assumes that you are familiar with the basic concepts of

public—key cryptography, as summarized in the companion document Introduction to

Public—Key Cryptography.

The SSL Protocol

The Transmission Control Protocol/Internet Protocol (TCP/IP) governs the transport
and routing of data over the Internet. Other protocols, such as the HyperText Transport
Protocol (HTTP), Lightweight Directory Access Protocol (LDAP), or Internet Messaging
Access Protocol (IMAP), run "on top of" TCP/IP in the sense that they all use TCP/IP to

support typical application tasks such as displaying web pages or running email servers.

Figure 1 SSL runs above TCP/IP and below high-level application
protocols

HTTF LEwa P IMAF .a s

Application larer

Metwork larer
secure soclets laer

TCHIF layer

The SSL protocol runs above TCP/IP and below higher-level protocols such as HTTP
or IMAP. It uses TCP/IP on behalf of the higher-level protocols, and in the process

allows an SSL-enabled server to authenticate itself to an SSL-enabled client, allows the



client to authenticate itself to the server, and allows both machines to establish an

encrypted connection.

These capabilities address fundamental concerns about communication over the Internet

and other TCP/IP networks:

SSL server authentication allows a user to confirm a server's
identity. SSL-enabled client software can use standard techniques
of public-key cryptography to check that a server's certificate and
public ID are valid and have been issued by a certificate authority
(CA) listed in the client's list of trusted CAs. This confirmation
might be important if the user, for example, is sending a credit
card number over the network and wants to check the receiving
server's identity.

SSL client authentication allows a server to confirm a user's identity. Using the
same techniques as those used for server authentication, SSL-enabled server
software can check that a client's certificate and public ID are valid and have
been issued by a certificate authority (CA) listed in the server's list of trusted
CAs. This confirmation might be important if the server, for example, is a bank
sending confidential financial information to a customer and wants to check the
recipient's identity.

An encrypted SSL connection requires all information sent between a client and
a server to be encrypted by the sending software and decrypted by the
receiving software, thus providing a high degree of confidentiality.
Confidentiality is important for both parties to any private transaction. In
addition, all data sent over an encrypted SSL connection is protected with a
mechanism for detecting tampering—-that is, for automatically determining

whether the data has been altered in transit.

The SSL protocol includes two sub—protocols: the SSL record protocol and the SSL

handshake protocol. The SSL record protocol defines the format used to transmit data.

The SSL handshake protocol involves using the SSL record protocol to exchange a

series of messages between an SSL-enabled server and an SSL-enabled client when

they first establish an SSL connection. This exchange of messages is designed to

facilitate the following actions:

Authenticate the server to the client.

Allow the client and server to select the cryptographic algorithms, or ciphers,



that they both support.
« Optionally authenticate the client to the server.
« Use public-key encryption techniques to generate shared secrets.

* FEstablish an encrypted SSL connection.

For more information about the handshake process, see The SSL Handshake.

Ciphers Used with SSL

Cipher Suites with RSA Key Exchange
FORTEZZA Cipher Suites

The SSL protocol supports the use of a variety of different cryptographic algorithms, or
ciphers, for use in operations such as authenticating the server and client to each other,
transmitting certificates, and establishing session keys. Clients and servers may support
different cipher suites, or sets of ciphers, depending on factors such as the version of
SSL they support, company policies regarding acceptable encryption strength, and
government restrictions on export of SSL-enabled software. Among its other functions,
the SSL handshake protocol determines how the server and client negotiate which
cipher suites they will use to authenticate each other, to transmit certificates, and to
establish session keys.

The cipher suite descriptions that follow refer to these algorithms:

« DES. Data Encryption Standard, an encryption algorithm used by
the U.S. Government.

* DSA. Digital Signature Algorithm, part of the digital authentication standard used
by the U.S. Government.

« KEA. Key Exchange Algorithm, an algorithm used for key exchange by the U.S.
Government.

« MDb5. Message Digest algorithm developed by Rivest.

» RC2 and RCA4. Rivest encryption ciphers developed for RSA Data Security.

« RSA. A public-key algorithm for both encryption and authentication. Developed
by Rivest, Shamir, and Adleman.

« RSA key exchange. A key-exchange algorithm for SSL based on the RSA
algorithm.

¢ SHA-1. Secure Hash Algorithm, a hash function used by the U.S. Government.

« SKIPJACK. A classified symmetric-key algorithm implemented in FORTEZZA-



compliant hardware used by the U.S. Government. (For more information, see
FORTEZZA Cipher Suites.)
¢ Triple-DES. DES applied three times.

Key—-exchange algorithms like KEA and RSA key exchange govern the way in which the
server and client determine the symmetric keys they will both use during an SSL
session. The most commonly used SSL cipher suites use RSA key exchange.

The SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites.
Administrators can enable or disable any of the supported cipher suites for both clients
and servers. When a particular client and server exchange information during the SSL
handshake, they identify the strongest enabled cipher suites they have in common and
use those for the SSL session.

Decisions about which cipher suites a particular organization decides to enable depend
on trade—offs among the sensitivity of the data involved, the speed of the cipher, and
the applicability of export rules.

Some organizations may want to disable the weaker ciphers to prevent SSL connections
with weaker encryption. However, due to U.S. government restrictions on products that
support anything stronger than 40-bit encryption, disabling support for all 40-bit
ciphers effectively restricts access to network browsers that are available only in the
United States (unless the server involved has a special Global Server ID that permits
the international client to "step up" to stronger encryption). For more information about

U.S. export restrictions, see Export Restrictions on International Sales.

To serve the largest possible range of users, it's administrators may wish to enable as
broad a range of SSL cipher suites as possible. That way, when a domestic client or
server is dealing with another domestic server or client, respectively, it will negotiate
the use of the strongest ciphers available. And when an domestic client or server is
dealing with an international server or client, it will negotiate the use of those ciphers
that are permitted under U.S. export regulations.

However, since 40-bit ciphers can be broken relatively quickly, administrators who are
concerned about eavesdropping and whose user communities can legally use stronger

ciphers should disable the 40-bit ciphers.

Cipher Suites with RSA Key Exchange

Table 1 lists the cipher suites supported by SSL that use the RSA key-exchange
algorithm. Unless otherwise indicated, all ciphers listed in the table are supported by

both SSL 2.0 and SSL 3.0. Cipher suites are listed from strongest to weakest; for more



information about the way encryption strength is measured, see Key Length and

Encryption Strength.

Table 1 Cipher suites supported by the SSL protocol that use the RSA

key—-exchange algorithm

Strength category and recommended use

Cipher suites

Strongest cipher suite. Permitted
for deployments within the United
States only. This cipher suite is
appropriate for banks and other
institutions that handle highly
sensitive data.

Triple DES, which supports 168-bit
encryption, with SHA-1 message
authentication. Triple DES is the
strongest cipher supported by SSL,
but it 1s not as fast as RC4. Triple
DES uses a key three times as long
as the key for standard DES.
Because the key size is so large,
there are more possible keys than
for any other cipher—-
approximately 3.7 * 10°°,

Both SSL 2.0 and SSL 3.0 support
this cipher suite.




Strong cipher suites. Permitted for
deployments within the United
States only. These cipher suites
support encryption that is strong
enough for most business or

government needs.

RC4 with 128-bit encryption and
MD5 message authentication.
Because the RC4 and RC2 ciphers
have 128-bit encryption, they are
the second strongest next to Triple
DES (Data Encryption Standard),
with 168-bit encryption. RC4 and
RC2 128-bit encryption permits
approximately 3.4 * 10°® possible
keys, making them very difficult to
crack. RC4 ciphers are the fastest
of the supported ciphers.

Both SSL 2.0 and SSL 3.0 support
this cipher suite.

RCZ with 128-bit encryption and
MD5 message authentication.
Because the RC4 and RCZ2 ciphers
have 128-bit encryption, they are
the second strongest next to Triple
DES (Data Encryption Standard),
with 168-bit encryption. RC4 and
RC2 128-bit encryption permits
approximately 3.4 * 10% possible
keys, making them very difficult to
crack. RC2 ciphers are slower than
RC4 ciphers.

This cipher suite is supported by
SSL 2.0 but not by SSL 3.0.




DES, which supports 56-bit
encryption, with SHA-1 message
authentication. DES is stronger
than 40-bit encryption, but not as
strong as 128-bit encryption. DES
56-bit encryption permits
approximately 7.2 * 10'° possible
keys.

Both SSL 2.0 and SSL 3.0 support
this cipher suite, except that SSL

2.0 uses MD5 rather than SHA-1

for message authentication.

Exportable cipher suites. These
cipher suites are not as strong as
those listed above, but may be
exported to most countries (note
that France permits them for SSL
but not for S/MIME). They provide
the strongest encryption available
for exportable products.t

RC4 with 40-bit encryption and
MD5 message authentication. RC4
40-bit encryption permits
approximately 1.1 * 10'* (a trillion)
possible keys. RC4 ciphers are the
fastest of the supported ciphers.

Both SSL 2.0 and SSL 3.0 support
this cipher.

RCZ with 40-bit encryption and
MD5 message authentication. RC2
40-bit encryption permits
approximately 1.1 * 10'* (a trillion)
possible keys. RCZ ciphers are
slower than the RC4 ciphers.

Both SSL 2.0 and SSL 3.0 support
this cipher.

Weakest cipher suite. This cipher
suite provides authentication and

tamner deftection bt no encrvntion.

No encryption, MD5 message
authentication only. This cipher

suite nses MD5 messagce




Server administrators must be authentication to detect tampering.
careful about enabling it, however, |It is typically supported in case a
because data sent using this cipher |client and server have none of the
suite is not encrypted and may be other ciphers in common.

accessed by eavesdroppers.
This cipher suite is supported by

SSL 3.0 but not by SSL 2.0.

! Note that for RC4 and RC2 ciphers, the phrase "40-bit encryption" means the keys are
still 128 bits long, but only 40 bits have cryptographic significance.

FORTEZZA Cipher Suites

Table 2 lists additional cipher suites supported by Netscape products with FORTEZZA
for SSL 3.0. FORTEZZA is an encryption system used by U.S. government agencies to
manage sensitive but unclassified information. It provides a hardware implementation of
two classified ciphers developed by the federal government: FORTEZZA KEA and
SKIPJACK. FORTEZZA ciphers for SSL use the Key Exchange Algorithm (KEA) instead
of the RSA key-exchange algorithm mentioned in the preceding section, and use

FORTEZZA cards and DSA for client authentication.

Table 2 FORTEZZA cipher suites supported by Netscape products with
FORTEZZA for SSL 3.0

Strength category and recommended use | Cipher suites




Strong FORTEZZA cipher suites.
Permitted for deployments within
the United States only. These
cipher suites support encryption
that 1s strong enough for most

business or government needs.

RC4 with 128-bit encryption and
SHA-1 message authentication.
Like RC4 with 128-bit encryption
and MD5 message authentication,
this cipher is one of the second
strongest ciphers after Triple DES.
It permits approximately 3.4 * 10%8
possible keys, making it very
difficult to crack.

This cipher suite is supported by
SSL 3.0 but not by SSL 2.0.

RC4 with SKIPJACK 80-bit
encryption and SHA-1 message
authentication. The SKIPJACK
cipher is a classified symmetric-key
cryptographic algorithm
implemented in FORTEZZA-
compliant hardware. Some
SKIPJACK implementations support
key escrow using the Law
Enforcement Access Field (LEAF).
The most recent implementations do
not.

This cipher suite is supported by
SSL 3.0 but not by SSL 2.0.

Weakest FORTEZZA cipher suite.
This cipher suite provides
authentication and tamper
detection but no encryption.
Server administrators must be
careful about enabling it, however,
because data sent using this cipher

suite is not encrvnted and mav he

No encryption, SHA-1 message
authentication only. This cipher
uses SHA-1 message authentication
to detect tampering.

This cipher suite is supported by
SSL 3.0 but not by SSL 2.0.




accessed by eavesdroppers.

The SSL Handshake

The SSL protocol uses a combination of public-key and symmetric key encryption.
Symmetric key encryption is much faster than public-key encryption, but public-key
encryption provides better authentication techniques. An SSL session always begins
with an exchange of messages called the SSL handshake. The handshake allows the
server to authenticate itself to the client using public-key techniques, then allows the
client and the server to cooperate in the creation of symmetric keys used for rapid
encryption, decryption, and tamper detection during the session that follows. Optionally,
the handshake also allows the client to authenticate itself to the server.

The exact programmatic details of the messages exchanged during the SSL handshake
are beyond the scope of this document. However, the steps involved can be summarized

as follows (assuming the use of the cipher suites listed in Cipher Suites with RSA Key

Exchange):

1. The client sends the server the client's SSL version number,
cipher settings, randomly generated data, and other information
the server needs to communicate with the client using SSL.

2. The server sends the client the server's SSL version number, cipher settings,
randomly generated data, and other information the client needs to communicate
with the server over SSL. The server also sends its own certificate and, if the
client is requesting a server resource that requires client authentication,
requests the client's certificate.

3. The client uses some of the information sent by the server to authenticate the

server (see Server Authentication for details). If the server cannot be

authenticated, the user is warned of the problem and informed that an encrypted
and authenticated connection cannot be established. If the server can be
successfully authenticated, the client goes on to Step 4.

4. Using all data generated in the handshake so far, the client (with the cooperation
of the server, depending on the cipher being used) creates the premaster secret
for the session, encrypts it with the server's public key (obtained from the

server's certificate, sent in Step 2), and sends the encrypted premaster secret to




the server.

5. If the server has requested client authentication (an optional step in the
handshake), the client also signs another piece of data that is unique to this
handshake and known by both the client and server. In this case the client sends
both the signed data and the client's own certificate to the server along with the
encrypted premaster secret.

6. If the server has requested client authentication, the server attempts to

authenticate the client (see Client Authentication for details). If the client cannot

be authenticated, the session is terminated. If the client can be successfully
authenticated, the server uses its private key to decrypt the premaster secret,
then performs a series of steps (which the client also performs, starting from
the same premaster secret) to generate the master secret.

7. Both the client and the server use the master secret to generate the session
keys, which are symmetric keys used to encrypt and decrypt information
exchanged during the SSL session and to verify its integrity——that is, to detect
any changes in the data between the time it was sent and the time it is received
over the SSL connection.

8. The client sends a message to the server informing it that future messages from
the client will be encrypted with the session key. It then sends a separate
(encrypted) message indicating that the client portion of the handshake is
finished.

9. The server sends a message to the client informing it that future messages from
the server will be encrypted with the session key. It then sends a separate
(encrypted) message indicating that the server portion of the handshake is
finished.

10. The SSL handshake is now complete, and the SSL session has begun. The client
and the server use the session keys to encrypt and decrypt the data they send

to each other and to validate its integrity.

Before continuing with the session, Netscape servers can be configured to check that
the client's certificate is present in the user's entry in an LDAP directory. This
configuration option provides one way of ensuring that the client's certificate has not
been revoked.

It's important to note that both client and server authentication involve encrypting some
piece of data with one key of a public—private key pair and decrypting it with the other

key:



« In the case of server authentication, the client encrypts the
premaster secret with the server's public key. Only the
corresponding private key can correctly decrypt the secret, so the
client has some assurance that the identity associated with the
public key is in fact the server with which the client is connected.
Otherwise, the server cannot decrypt the premaster secret and
cannot generate the symmetric keys required for the session, and
the session will be terminated.

« In the case of client authentication, the client encrypts some random data with
the client's private key——that is, it creates a digital signature. The public key in
the client's certificate can correctly validate the digital signature only if the
corresponding private key was used. Otherwise, the server cannot validate the

digital signature and the session is terminated.

The sections that follow provide more details on Server Authentication and Client

Authentication.

Server Authentication

Netscape's SSL-enabled client software always requires server authentication, or
cryptographic validation by a client of the server's identity. As explained in Step 2 of

The SSL Handshake, the server sends the client a certificate to authenticate itself. The

client uses the certificate in Step 3 to authenticate the identity the certificate claims to
represent.

To authenticate the binding between a public key and the server identified by the
certificate that contains the public key, an SSL-enabled client must receive a "yes"
answer to the four questions shown in Figure 2. Although the fourth question is not
technically part of the SSL protocol, it is the client's responsibility to support this
requirement, which provides some assurance of the server's identity and thus helps

protect against a form of security attack known as "man in the middle."

Figure 2 How a Netscape server authenticates a client certificate



Clientk list of

Server's public key =8 trusted CAs

Certificate's serial number

Certificate's validity period 0 I_s de_L}r_S u:I:ate.
within validity period?

server's DM

e l5issuing CAa
lssuer's DN trusted CAT

¥

lzsuer's O

Issuers digital

signature 0 Dees issuing CA's Issuer's digital
public ley validate signature

issuer's digital signature?

| Is5uer's public ley w—a

'o Coes the doman
name specified in the
server's DN rmatch
the server's actual
darmain narme!

An SSL-enabled client goes through these steps to authenticate a server's identity:

1. Is today's date within the validity period? The client checks the
server certificate's validity period. If the current date and time are
outside of that range, the authentication process won't go any
further. If the current date and time are within the certificate's
validity period, the client goes on to Step 2.

2. Is the issuing CA a trusted CA? Each SSL-enabled client maintains a list of
trusted CA certificates, represented by the shaded area on the right side of
Figure 2. This list determines which server certificates the client will accept. If
the distinguished name (DN) of the issuing CA matches the DN of a CA on the
client's list of trusted CAs, the answer to this question is yes, and the client
goes on to Step 3. If the issuing CA is not on the list, the server will not be
authenticated unless the client can verify a certificate chain ending in a CA that

is on the list (see CA Hierarchies for details).

3. Does the issuing CA's public key validate the issuer's digital signature? The
client uses the public key from the CA's certificate (which it found in its list of
trusted CAs in step 2) to validate the CA's digital signature on the server
certificate being presented. If the information in the server certificate has

changed since it was signed by the CA or if the CA certificate's public key



doesn't correspond to the private key used by the CA to sign the server
certificate, the client won't authenticate the server's identity. If the CA's digital
signature can be validated, the server treats the user's certificate as a valid
"letter of introduction" from that CA and proceeds. At this point, the client has
determined that the server certificate is valid. It is the client's responsibility to
take Step 4 before Step 5.

4. Does the domain name in the server's certificate match the domain name of the
server itself? This step confirms that the server is actually located at the same
network address specified by the domain name in the server certificate.
Although step 4 is not technically part of the SSL protocol, it provides the only

protection against a form of security attack known as a Man-in—the—Middle

Attack. Clients must perform this step and must refuse to authenticate the
server or establish a connection if the domain names don't match. If the server's
actual domain name matches the domain name in the server certificate, the
client goes on to Step 5.

5. The server is authenticated. The client proceeds with the SSL handshake. If the
client doesn't get to step 5 for any reason, the server identified by the
certificate cannot be authenticated, and the user will be warned of the problem
and informed that an encrypted and authenticated connection cannot be
established. If the server requires client authentication, the server performs the

steps described in Client Authentication.

After the steps described here, the server must successfully use its private key to

decrypt the premaster secret the client sends in Step4 of The SSL Handshake.

Otherwise, the SSL session will be terminated. This provides additional assurance that
the identity associated with the public key in the server's certificate is in fact the

server with which the client is connected.

Man-in—-the—-Middle Attack

As suggested in Step 4 above, the client application must check the server domain name
specified in the server certificate against the actual domain name of the server with
which the client is attempting to communicate. This step is necessary to protect against
a man-—in the middle attack, which works as follows.

The "man in the middle" is a rogue program that intercepts all communication between
the client and a server with which the client is attempting to communicate via SSL. The

rogue program intercepts the legitimate keys that are passed back and forth during the



SSL handshake, substitutes its own, and makes it appear to the client that it is the
server, and to the server that it is the client.

The encrypted information exchanged at the beginning of the SSL handshake is actually
encrypted with the rogue program's public key or private key, rather than the client's or
server's real keys. The rogue program ends up establishing one set of session keys for
use with the real server, and a different set of session keys for use with the client. This
allows the rogue program not only to read all the data that flows between the client and
the real server, but also to change the data without being detected. Therefore, it is
extremely important for the client to check that the domain name in the server
certificate corresponds to the domain name of the server with which a client is
attempting to communicate—-in addition to checking the wvalidity of the certificate by

performing the other steps described in Server Authentication.

Client Authentication

SSL-enabled servers can be configured to require client authentication, or
cryptographic validation by the server of the client's identity. When a server configured

this way requests client authentication (see Step 6 of The SSL Handshake), the client

sends the server both a certificate and a separate piece of digitally signed data to
authenticate itself. The server uses the digitally signed data to validate the public key in
the certificate and to authenticate the identity the certificate claims to represent.

The SSL protocol requires the client to create a digital signature by creating a one—-way
hash from data generated randomly during the handshake and known only to the client
and server. The hash of the data is then encrypted with the private key that
corresponds to the public key in the certificate being presented to the server.

To authenticate the binding between the public key and the person or other entity
identified by the certificate that contains the public key, an SSL-enabled server must
receive a "yes" answer to the first four questions shown in Figure 3. Although the fifth
question is not part of the SSL protocol, Netscape servers can be configured to support
this requirement to take advantage of the user's entry in an LDAP directory as part of

the authentication process.

Figure 3 How a Netscape server authenticates a client certificate



Servers list of
trusted CAs

|ohn Doe's public ley &=

Certificate’s serial number

Certificate’s validity period 9 I_S tﬁd%‘.s date.
within validity period?

John Dioa's Dy
e Iz issuing CA a

lssuer's DM trusted CA?
* lssuer's i
Issuer’s digital - Issuer's public leeyw=—>0
signature e Does issuing CA's = Issuer's digital
public ley validate — signature
0 Does user's issuer's digital signature?

public ey
validate user's
digital signature?

e |z user's certificate
listed in LDAP entry for

user!

Random data l

John Doeks digital
signature

Directary Server

An SSL-enabled server goes through these steps to authenticate a user's identity:

1. Does the user's public key validate the user's digital signature?
The server checks that the user's digital signature can be validated
with the public key in the certificate. If so, the server has
established that the public key asserted to belong to John Doe
matches the private key used to create the signature and that the
data has not been tampered with since it was signed.

At this point, however, the binding between the public
key and the DN specified in the certificate has not yet
been established. The certificate might have been
created by someone attempting to impersonate the
user. To validate the binding between the public key
and the DN, the server must also complete Step 3 and
Step 4.



Is today's date within the validity period? The server checks the certificate's
validity period. If the current date and time are outside of that range, the
authentication process won't go any further. If the current date and time are
within the certificate's validity period, the server goes on to Step 3.

Is the issuing CA a trusted CA? Each SSL-enabled server maintains a list of
trusted CA certificates, represented by the shaded area on the right side of
Figure 3. This list determines which certificates the server will accept. If the DN
of the issuing CA matches the DN of a CA on the server's list of trusted CAs,
the answer to this question is yes, and the server goes on to Step 4. If the
issuing CA is not on the list, the client will not be authenticated unless the
server can verify a certificate chain ending in a CA that is on the list (see CA
Hierarchies for details). Administrators can control which certificates are
trusted or not trusted within their organizations by controlling the lists of CA
certificates maintained by clients and servers.

Does the issuing CA's public key validate the issuer's digital signature? The
server uses the public key from the CA's certificate (which it found in its list of
trusted CAs in Step 3) to validate the CA's digital signature on the certificate
being presented. If the information in the certificate has changed since it was
signed by the CA or if the public key in the CA certificate doesn't correspond to
the private key used by the CA to sign the certificate, the server won't
authenticate the user's identity. If the CA's digital signature can be validated, the
server treats the user's certificate as a valid "letter of introduction" from that
CA and proceeds. At this point, the SSL protocol allows the server to consider
the client authenticated and proceed with the connection as described in Step 6.
Netscape servers may optionally be configured to take Step 5 before Step 6.

Is the user's certificate listed in the LDAP entry for the user? This optional step
provides one way for a system administrator to revoke a user's certificate even
if it passes the tests in all the other steps. The Netscape Certificate Server can
automatically remove a revoked certificate from the user's entry in the LDAP
directory. All servers that are set up to perform this step will then refuse to
authenticate that certificate or establish a connection. If the user's certificate in
the directory is identical to the user's certificate presented in the SSL
handshake, the server goes on to step 6.

Is the authenticated client authorized to access the requested resources? The
server checks what resources the client is permitted to access according to the

server's access control lists (ACLs) and establishes a connection with



appropriate access. If the server doesn't get to step 6 for any reason, the user
identified by the certificate cannot be authenticated, and the user is not allowed

to access any server resources that require authentication.




