
Establishing Pairwise Keys for Secure Communication in Ad Hoc Networks:
A Probabilistic Approach

Sencun Zhu1 Shouhuai Xu2∗ Sanjeev Setia1† Sushil Jajodia1

1Center for Secure Information Systems, George Mason University, Fairfax, VA 22030
2Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249

Email:{szhu1,setia,jajodia}@gmu.edu,shxu@cs.utsa.edu

Abstract

A prerequisite for secure communication between two
nodes in an ad hoc network is that the nodes share a key to
bootstrap their trust relationship. In this paper, we present
a scalable and distributed protocol that enables two nodes
to establish a pairwise shared key on the fly, without requir-
ing the use of any on-line key distribution center. The design
of our protocol is based on a novel combination of two tech-
niques – probabilistic key sharing and threshold secret shar-
ing. Our protocol is scalable since every node only needs
to possess a small number of keys, independent of the net-
work size, and it is computationally efficient because it only
relies on symmetric key cryptography based operations. We
show that a pairwise key established between two nodes us-
ing our protocol is secure against a collusion attack by up
to a certain number of compromised nodes. We also show
through a set of simulations that our protocol can be param-
eterized to meet the desired levels of performance, security
and storage for the application under consideration.

1 Introduction

For secure communication between two mobile nodes
in an ad hoc network, i.e., secure peer-to-peer communi-
cation, it is necessary for the two nodes to share a secret
key. This can be easily achieved if we assume the existence
of a public key infrastructure. However, many mobile ad
hoc networks cannot afford to deploy public key cryptosys-
tems due to their high computational overheads and storage
constraints. For instance, Brown et al [3] reported that a
512-bit RSA signature generation takes 2 − 6 seconds on
a RIM Pager and on a Palm Pilot, and Perrig et al [23] re-
ported that a current generation sensor node has just 4500

∗Work mostly done while affiliated with University of California at
Irvine.

†Also with Dept. of Computer Science, George Mason University.

bytes for security and applications. Consequently, it is nec-
essary to explore approaches that are based on symmetric
key cryptography.

A fundamental issue that must be addressed if symmet-
ric keys are used for secure communication is key distri-
bution. The simplest strategy is to use a pairwise key pre-
deployment scheme, in which every node is pre-loaded with
N − 1 keys each of which is shared with another node,
where N is the number of nodes in the network. Clearly,
this scheme is not suitable for large networks since the stor-
age required per node increases linearly with network size.

In a seminal work, Needham and Schroeder [20] pro-
posed an approach in which an on-line server acts as a key
distribution center (KDC) for establishing a pairwise shared
key between two nodes. Each node is pre-loaded with a
unique key that it shares with the KDC. To communicate se-
curely, a pair of participants obtain fresh session keys from
the on-line server. For example, secret key protocols such
as Kerberos [15] and Otway-Rees [21] require an interac-
tive trusted third party, a KDC, or a Key Translation Center
(KTC) in order to establish a shared key between any two
nodes. While these schemes have been widely deployed in
wired networks, this approach is unsuitable for ad hoc net-
works that are characterized by dynamic topology changes
and node failures (e.g., due to battery exhaustion), and by
the fact that there is typically no on-line server available.

In this paper, we present a scalable distributed protocol
that enables two nodes in an ad hoc network to establish a
pairwise shared key on the fly, without requiring the use of
an on-line key distribution center. The design of our pro-
tocol is based on a novel combination of two techniques
– probabilistic key sharing and threshold secret sharing. In
our protocol, the storage requirements per node depend only
on the level of security desired and are independent of the
size of the network. Our protocol relies only on symmetric
key cryptography operations and is thus computationally ef-
ficient.

Unlike a traditional pairwise key that is shared only be-
tween two nodes, a pairwise key established using our pro-

1Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

tocol is exclusively known to the peers with overwhelming
probability, and it is secure against a collusive attack by up
to a certain number of compromised nodes. We study the
performance and security aspects of our protocol through
both analysis and detailed simulation, and show that the
protocol can be parameterized to meet the desired levels of
security, performance and storage for the application under
consideration.

The rest of this paper is organized as follows. We discuss
related work in Section 2 and present the details of our pair-
wise key establishment protocol in Section 3. We analyze
its performance and security in Section 4, and discuss its
availability and robustness in Section 5. Finally, Section 6
concludes this work.

2 Related Work

Probabilistic Key Sharing As discussed in Section 1,
most of the proposed symmetric key cryptography protocols
for establishing a pairwise shared key between two nodes
make use of an on-line key server. Mitchell and Piper [19]
proposed a solution based on probabilistic key sharing that
does not depend on such an on-line server. However, the
storage complexity imposed on each participant in their
scheme seems to be unaffordable in the context of ad hoc
networks (cf. [25] for lower bounds).

The probabilistic keying scheme in our protocol is simi-
lar to schemes that have been used by other researchers [10,
5]. Eschenauer and Gligor [10] introduced a key manage-
ment scheme based on probabilistic key sharing for dis-
tributed sensor networks (DSN) with central key servers
(e.g., base stations). Chan et al. extended this scheme
by presenting three new mechanisms for key establishment
in sensor networks based on the framework of probabilis-
tic key predeployment, including a mechanism for pairwise
shared key establishment called multipath key reinforce-
ment.

Our work differs from the previous ones in several as-
pects. First, in our scheme, a node can deduce the set of
keys it shares with any other node (which may be an empty
set) only based on the latter’s identity. In contrast, the ap-
proaches in [10, 5] require each node to exchange the ids of
the keys it possesses with its neighbors. Thus, our approach
trades computation for communication, which is desirable
in ad hoc networks. Second, Eschenauer and Gligor pro-
posed using the predeployed keys for encrypting all com-
munication between nodes. A session key between two
nodes can also be established using a logical path secured
by the predeployed keys. However, it seems that the es-
tablished session key might not be exclusively known to
the two nodes involved, because each predeployed key is
known to several nodes. In contrast, we propose using the
predeployed keys for establishing a shared pairwise key that

is exclusively known to two nodes with overwhelming prob-
ability.

We note that the multipath key reinforcement scheme
in [5] shares some similarities with our scheme in that both
the schemes use the idea of secret sharing; however, our
scheme differs from theirs in the following aspects. First,
their scheme uses multiple physically disjoint paths be-
tween two nodes in establishing a pairwise key, while our
scheme can use a single physical path as long as the shares
are transmitted over multiple logically disjoint paths. Sec-
ond, we present a detailed security and performance anal-
ysis of the idea of combining probabilistic key sharing and
secret sharing, and also present an algorithm for deciding
the number of secret shares to be used for establishing a
pairwise key based on the desired level of security.

Threshold Secret Sharing There has been a great deal
of research on threshold secret sharing Shamir [26] and its
applications. In one direction, Gong [13] proposed an ap-
proach in which threshold secret sharing is used for increas-
ing the availability of authentication services. Our work
bears the similarity that we also utilize secret sharing tech-
niques to establish pairwise keys. Unlike Gong’s scheme,
however, our scheme does not use any single on-line key
server. In another relevant direction, researchers have ex-
tensively investigated the interplay of network connectiv-
ity and secure and reliable communication (e.g., Dolev [6],
Delev et al. [8], Franklin and Wright [11], Desmedt and
Wang [7]). We refer the reader to Bagchi et al. [2] for an
overview and recent result in this regard.

3 The Pairwise Key Establishment Protocol

In this section, we first describe our assumptions and
present the basic ideas underlying our scheme, and then
present our scheme in detail.

3.1 Overview

Network, Node and Security Assumptions First, we as-
sume network links are bidirectional, i.e., if node A can hear
node B, B can also hear A. This is true when all the nodes
use omnidirectional antennas and have equal power levels.
Second, we aim to provide solutions for low-end devices.
The resources of a node such as power, storage, computa-
tion and communication capacity, are relatively constrained,
making public key techniques impractical. We assume that
every node has space for storing hundreds of bytes or a few
kilobytes of keying materials, depending on the security re-
quirements. Third, we do not assume a central key server
exists in the formed network, whereas it may exist off-line
to initiate the nodes prior to the formation of the network.
Fourth, we assume that if a node is compromised, all the

2Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

information it holds will also be compromised. We do not
distinguish between a compromised node and an attacker.
Moreover, all the compromised nodes may try to eavesdrop
on other nodes’ communications and collude to launch at-
tacks by sharing their keying materials.

Protocol Operation Our pairwise key establishment pro-
tocol is based on two techniques – probabilistic key sharing
and threshold secret sharing.

Before the deployment of a network, i.e., during a key
pre-distribution phase, every node is loaded with a (small)
fraction of keys out of a large pool of keys by a key server.
Note that this phase occurs before the deployment of the
network, and the key server stays off-line after finishing
this phase. Keys are allocated to each node using a prob-
abilistic scheme that enables every pair of nodes to share
one or more keys with certain probability. The keys directly
shared between any two nodes can thus be used to encrypt
messages exchanged between them. Even if two nodes do
not share any keys directly, our probabilistic key sharing
scheme enables them to communicate securely using logi-
cal paths obtained via a logical path discovery process that
will be presented in Section 3.2.

To be concrete, consider two nodes u and v that wish
to communicate privately. u and v may already share
one or more keys from the pool of keys after the key pre-
distribution phase. However, these keys are not known ex-
clusively to u and v because every key in our key pool may
be allocated to multiple nodes; hence, they cannot be used
for encrypting any message that is private to u and v. Thus
the goal of our algorithm is to establish a key, S, that is
known exclusively to u and v. The basic idea underlying
the establishment of such a key S is as follows: The sender
node splits S into multiple shares using an appropriate se-
cret sharing scheme. The sender then transmits to the recip-
ient node all these shares, using a different logical path for
each share. The recipient node then reconstructs S after it
receives all (or a certain number of) the shares.

3.2 Detailed Protocol Description

We now discuss key pre-distribution, logical path discov-
ery, and pairwise key establishment in detail.

Notations

• u, v (in lower case) are principals such as nodes.
• Ru is the set of keys that node u possesses.
• Iu is the set of key ids corresponding to the keys in Ru.
• |Iu| is the size of the set Iu.

• Ruv is the intersection of Ru and Rv, i.e., Ruv
def
=

Ru ∩ Rv .

3.2.1 Key Pre-distribution

In the key pre-distribution phase, the off-line key server
loads each node u with m distinct keys from the key pool
P of l keys {k1, k2, . . . , kl} prior to the formation of the ad
hoc network. A deterministic algorithm is used to decide
the subset of keys Ru allocated to node u. Specifically, for
each node with a unique node id, the key server generates
m distinct integers between 1 and l using a pseudo-random
number generator upon the input of a node id. These m in-
tegers are the ids of the keys for this node. As a result, each
key in the key pool has a probability of m/l to be assigned
to each node.

In [10, 5], the key server randomly chooses m keys out
of l keys; hence, a node u does not know what keys another
node v possesses unless node v sends its key id set Iv to
it. In contrast, our id-based key assignment scheme allows
any node that knows another node’s id v to determine Iv

independently. Thus, our scheme is more communication-
efficient.

Note that in our scheme all the nodes do not have to
be initialized and join the network at the same time. In-
deed, new nodes can be initialized in the same way as de-
scribed above and join the network at any time. Moreover,
our scheme does not require a key predistribution phase for
every instance of network formation.

3.2.2 Logical Path Discovery

The logical path discovery process is necessary when a
node wants to exchange messages securely with other nodes
in the network.

We say there are logical paths between two nodes when
(i) the two nodes share one or more keys in their key sets.
We call such paths direct paths. (ii) the two nodes do not
share any keys, but through other intermediate nodes they
can exchange messages securely. We call such paths indi-
rect paths and call the involved intermediate nodes proxies.

In our scheme, it is straightforward to find logical paths
between two nodes. Since the key pre-distribution algo-
rithm is public and deterministic, without proactively ex-
changing the set of its key ids with others, a node knowing
the ids of its neighbors can determine not only which neigh-
bors share or do not share keys with it, but also which two
neighbors share which keys. The latter knowledge is very
valuable when node u does not share any keys with node
v, because node u can use a neighbor (say x) which shares
keys with both of them as a proxy. For example, suppose
node u shares a key kux with node x, node v shares a key
kvx with node x, but no shared key exists between node u
and node v. To transmit a message M to node v securely,
node u executes the following steps.

u → x : {M}kux
, x → u : {M}kxv

, u → v : {M}kxv
.

3Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

From this example, we can see that a proxy node acts as a
translator between nodes. For convenience, we say node x
translates the message M .

We call node x in the above example node u’s one-hop
proxy to v because x is one hop away from u. More gen-
erally, node x is said to be node u’s i-hop proxy if x is i
hops away from u and x shares a key with both u and v. Let
z1, s1, s2 be the number of keys in Ruv, Rux, Rxv respec-
tively. We say that node u and v have z1 direct paths and
zx = min(s1, s2) indirect paths via x. There could be zero,
one or many logical paths between two nodes. Our proto-
col always uses any direct paths that exist between nodes in
preference to indirect paths, since the use of an indirect path
incurs additional computational and communication over-
head.

3.2.3 Pairwise Key Establishment

We now describe an approach whereby two nodes can es-
tablish a pairwise key that is exclusively known to the two
nodes with overwhelming probability. We note the com-
mon keys, if any, between any two nodes after the key pre-
distribution phase, are not exclusively held by them, be-
cause every key in the key pool is statistically allocated to
m·N

l nodes, given l, m, and the network size N . Therefore,
the keys in the key pool cannot be used directly for private
communications between two nodes; otherwise, a compro-
mised node or the coalition of compromised nodes may be
able to compromise the communications of many pairs of
other nodes.

The main observation underlying our key establishment
scheme is that a sender node can split the to-be-established
pairwise secret key into multiple shares, and then send them
securely over multiple logical paths between itself and a
recipient node. More specifically, the basic scheme involves
five steps:

1. The sender node u first randomly generates the se-
cret key S, then derives n shares sk1, sk2, · · ·, skn

from S using the following simple algorithm: it gener-
ates n − 1 random strings sk1, sk2, · · ·, skn−1, |S| =
|sk1| = · · · = |skn−1|, and then computes skn =
S ⊕ sk1 ⊕ · · · ⊕ skn−1, where ⊕ is the bitwise XOR
operation. This scheme requires a recipient node to
receive all these n shares to recover S using simple
XOR operations, while no information about S can
be determined with less than n shares. We shall dis-
cuss the choice of n in Section 3.2.4 and some alterna-
tive schemes that increase the availability of this basic
scheme by using threshold secret sharing in Section 5.

2. Node u transmits all the shares to the recipient node v,
using a different logical path for each share.

3. Node v computes the secret key S from the n received
shares.

4. Node v sends back to node u a HELLO message, au-
thenticated with S as the MAC key1.

5. Node u verifies the HELLO message. The key estab-
lishment process is done if the HELLO message is cor-
rect; otherwise, node u aborts the process or tries again
with a different set of logical paths after a certain time
period.

Two types of logical paths, i.e., direct paths and indirect
paths, are potentially used in the above process. The proxy
nodes involved in the indirect logical paths in step 2 act as
on-the-fly KDC servers (in parallel to [13]).

3.2.4 Determining The Number of Secret Shares

Generally, the greater the number of secret shares used in
the pairwise key establishment process, the better security
will the pairwise key achieve. However, using a greater
number of secret shares requires a greater number of log-
ical paths to be involved between two nodes, which leads
to higher bandwidth and computational overheads. This is
because any logical path may be used for securing at most
one secret share for two nodes; otherwise, compromising
one path would compromise multiple secret shares.

In general, between two nodes there are three classes of
logical paths that can be used in a pairwise key establish-
ment, although which classes are available depends on the
application under consideration.

Class C1 The first class, denoted by C1, includes the di-
rect paths based on the keys common to the two nodes. In
our scheme, a sender node u knowing the id of the recip-
ient node v can determine their common key set by itself.
Let z1 be the number of keys in Ruv , and sk1 be the share
generated by node u for class C1. To deliver sk1, node u
computes the XORed key kenc = XOR δi,∀δi ∈ Ruv , then
encrypts (with appropriate authentication) sk1 with kenc.
(One may argue that the sender can generate z1 shares and
encrypt each share with a distinct key in Ruv . However,
this approach incurs a higher communication cost without
increasing security.)

Class C2 The second class, denoted by C2, includes indi-
rect logical paths that use an intermediate node on the phys-
ical path between the two nodes as a proxy. Class C2 logical
paths can be easily found in ad hoc networks where the rout-
ing protocol in use facilitates the discovery of intermediate
nodes between the two participants. For example, in the

1More precisely, node v uses km = fS(0) as the MAC key, and kp =
fS(1) as the pairwise key, where f is a pseudo random function [12]

4Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

Dynamic Source Routing (DSR) [14] protocol, the ids of
all the intermediate nodes between the source and the desti-
nation are returned to the source in the ROUTING REPLY
message. The source node can therefore choose the inter-
mediate nodes that might act as proxies to securely forward
some secret shares.

We employ the following forwarding algorithm. Let
node x be a proxy node for node u and node v, as long
as Rux �= ∅ and Rxv �= ∅. Suppose there are s1 and s2 keys
in Rux and Rxv respectively and zs = min(s1, s2), then
the number of keys in Rux and Rxv used to encrypt a share
is zs. More specifically, (i) node u generates a new secret
skx, (ii) it then (randomly) selects zs keys in Rux to com-
pute the XORed keys k1

ux, (iii) it encrypts (with appropri-
ate authentication) skx with k1

ux, (iv) it sends the encrypted
share to node x. Node x decrypts skx, re-encrypts it with
the XORed key k2

xv computed using any zs keys in Rxv and
sends the result to node v. Since node x is on the physical
path from u to v, no extra message overhead is incurred
in the use of such proxies. The number of such proxies is
mainly determined by the topological distance between u
and v. We denote the set of such proxies by Px2.

Class C3 The third class, denoted by C3, includes the in-
direct logical paths that use nodes that do not belong to class
C2, i.e., nodes that are not on the path from u to v. Both the
neighbors of the source node and the neighbors of the des-
tination node are potential proxy nodes for logical paths in
class C3. The source node can discover the neighbors of
the destination node via an explicit message exchange with
the destination. Alternatively, it may be possible to extend
the underlying routing protocol to provide this information
to the source at the time of route formation. For example,
in DSR, when the destination node receives the ROUTING
REQUEST message from the source node, it can piggyback
the ids of its neighbors that can act as proxies in the ROUT-
ING REPLY message. Additionally, the intermediate nodes
may also add their own neighbors to the ROUTING REPLY
message if their neighbors can be proxies for the source and
the destination. With this information, the source node can
determine how many proxies and how many secret shares it
can deliver using some or all of them. Basically, the source
node can run a forwarding algorithm similar to that used
for class C2. The main difference is that it incurs some ad-
ditional communication overhead because the proxy nodes
are not on the physical path from the source to the destina-
tion. The number of such proxies is mainly determined by
node density of the network and the distance between the
source and the destination. We denote by Px3 the set of
proxy nodes used in class C3 logical paths.

For a source node u and a destination node v, every key
in their key sets may be used at most once for delivering
one secret share. Therefore, node u selects only one of the

proxies that contribute the same keys. The source should
select proxies with the goal of minimizing the performance
overhead. In Fig. 1 we show the algorithm used by the
source node to determine the total number of secret shares
n, given all the candidate proxy sets Px2, Px3 and the de-
sired security level p0

w. The algorithm evaluates the security
level pw in each iteration based on the security analysis in
Section 4.1. If pw ≤ p0

w, the algorithm terminates and re-
turns n. Otherwise, if the desired security level cannot be
achieved with all the available proxies, the algorithm reports
n and the finally achieved security level pw.

In the latter case, the (sender) peer may abort the pro-
cess until a later time when network conditions change,
e.g., when it has more neighbors. Under certain circum-
stances, it may be better for the peers to establish a tem-
porary pairwise key based on the currently available secure
paths, even though this temporary key does not satisfy the
required security level. At a later time, the two peers may
discover additional proxies due to their movements. There-
fore, the sender can use these proxies to deliver some new
secret shares to the destination. The final pairwise key is a
combination (XORing) of the temporary key and these new
shares. In other words, a pairwise key can be established
and enhanced incrementally due to node mobility.

4 Security and Performance Analysis

4.1 Security Analysis

For the sake of simplicity and clarifying the presentation,
we assume that the underlying encryption scheme is secure
and define the security2 of our scheme as the probability
pw that a coalition of up to w nodes can compromise the
established pairwise key. Suppose there are w compromised
nodes, r1, · · ·, rw, that collude by sharing their key sets.
Therefore, they have the set of keys Σ = ∪w

i=1Rri
, which

allows them to obtain the secret shares via the logical paths
secured by K ⊆ Σ.

Let us assume node u and node v have z1 direct paths
(i.e., z1 keys in Ruv) that are used for securing the class
C1 share. Recall in our key predistribution scheme each
key in the key pool has a probability of m/l to be cho-
sen by each node. Consider a key K in the key pool and
any coalition of w nodes, the probability pc that key K is
contained in the union of the key sets of the w nodes is
pc = (1 − (1 − m

l)w). Therefore, the probability pw1 that
the coalition of w nodes cover all the z1 keys in Ruv is

pw1 = pz1
c = (1 − (1 − m

l
)
w
)
z1

. (1)

Let z2 be the number of indirect paths which we com-
pute in Step 4 of the algorithm in Fig 1. A secret share

2More precisely, here security refers to privacy or secrecy.

5Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

Algorithm
Input: u, v, Px2, Px3, p

0
w

Output: n – the number of secret shares
Method:

// z1 – the number of direct paths, z2 – the number of indirect one-proxy paths.

1. n ← 0, z1 ← 0, z2 ← 0, I ′u ← Iu, I ′v ← Iv .
2. Node u computes Iuv = Iu ∩ Iv, and updates

I ′u ← I ′u − Iuv, I ′v ← I ′v − Iuv , z1 ← |Iuv|. If z1 ≥ 1, then n ← 1.
3. P ← Px2.
4. From all the candidate proxy nodes in P , node u randomly chooses a node, say x.

Let I1
def
= Iux ∩ I ′u and I2

def
= Ixv ∩ I ′v .

If I1 �= ∅ and I2 �= ∅, then
Select x as a proxy node. Let zs ← min(|I1|, |I2|),
then node u deletes zs ids in I1 from I ′u and deletes zs ids in I2 from I ′v .
n ← n + 1, z2 ← z2 + zs

P ← P − {x}.
Evaluate the security level pw based on z1 and z2 using the formulae in Section 4.1. If pw ≤ p0

w, return n.
5. Repeat Step 4 until P becomes empty.
6. P ← Px3, repeat Step 4 and Step 5.
7. return n.

Figure 1. An algorithm for determining the number of secret shares in a pairwise key establishment.

through an indirect logical path involving a single proxy
node is compromised when the compromised nodes have
keys to decode either the transmission between the source
node and the proxy node, or the transmission between the
proxy node and the destination node. Therefore, the prob-
ability pw2 that the coalition of w nodes are able to decode
all these z2 secret shares is

pw2 = (1 − (1 − m

l
)
2w

)
z2

. (2)

Thus, the security of the pairwise key is

pw = pw1 · pw2 (3)

In addition, there is a lower bound on the security of the
pairwise key, which occurs when a peer uses all the keys in
its key set for securing secret shares. Let pc(w) be the prob-
ability that the key set of a legitimate node is completely
covered by that of w colluding nodes. We have

pc(w) = (1 − (1 − m

l
)
w
)
m

. (4)

Given the desired security level p0
w and w, we should select

m and l so that pc(w) ≤ p0
w.

4.2 Performance Analysis

We use the communication cost involved in a pairwise
key establishment process as the metric to evaluate the per-

formance of the basic scheme. We do not consider the com-
putational cost because this process only involves a few in-
expensive symmetric key cryptography operations. We also
do not consider the energy consumption of our protocol be-
cause it largely depends on the communication cost. Note
that the cost is one-time (i.e., once and for all) because two
nodes usually only have to establish their pairwise key once.

4.2.1 Communication Cost

The communication cost Cs of our protocol is the total num-
ber of hops traversed by the n secret shares in a pairwise key
establishment operation. Clearly, Cs increases with n and d
the topological distance in hops between two peers, because
all the secret shares are forwarded hop-by-hop along the
route between the two peers. Let n1 be the number of secret
shares corresponding to C1, n2 corresponding to C2, and n3

corresponding to C3 (when only considering one-hop prox-
ies), then Cs = d·(n1+n2+n3)+2n3 = dn+2n3. Namely,
those proxies on the route (corresponding to C2) will au-
tomatically forward, after decryption and re-encryption, a
message to the recipient.

Below, we use n as the indication of the communication
cost, and study the factors that affect the communication
through detailed simulations. Note we only consider the
one-hop proxies for C3 in this performance study.

In our simulations, we consider a network space of

6Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

2000m × 2000m, and a default network size of 200 nodes
that are randomly distributed in the space3. The transmis-
sion range of a node is 250m. Based on these settings every
node has 8.7 immediate neighbors on average. We gener-
ate a route for each pair of connected peers based on the
shortest path routing algorithm. All the results have 95%
confidence intervals that are within 5% of the reported val-
ues.

Number of Secret Shares and its Composition To eval-
uate the communication costs of our protocol, we ran the
algorithm in Fig. 1 to determine the number of each type of
proxies used for achieving the target security level pw =
10−6 and w = 10 (Canetti et al [4] suggest that a un-
forgeability probability of 10−6 is suitable for many appli-
cations.). Fig. 2 shows the average number of secret shares
n used in a pairwise key establishment for any two peers at
a distance of d hops. The figure also shows the composition
of n, i.e., the number of shares that are attributed to the dif-
ferent classes of logical paths (C1, C2, and C3) used by our
algorithm.

From Fig. 2, we can make the following observations.
First, the average number of shares corresponding to C1 is
around one. As long as two nodes have at least a common
key in their pre-deployed key sets, they will be able to de-
liver one secret share through this direct path. Consider a
key K in the key pool. The probability that K is allocated
to both the peer nodes is (m/l)2. Then the probability that
none of the keys in the key pool is allocated to both the
nodes is (1 − (m/l)2)l. Thus, the probability ps that two
nodes have at least one key in common is

ps = 1 − (1 − (m/l)2)l. (5)

Let m = 200 and l = 10000, then ps = 0.98. ps is inde-
pendent of the distance between nodes. This explains why
in Fig. 2 the number of shares corresponding to C1 is con-
stant. Note that the expected value of z1 (the number of
common keys between two nodes) also depends on m and l
and is given by E(z1) = l ∗ (m/l)2 = m2/l.

Second, the total number of secret shares required to
achieve the desired security level is independent of the
physical distance d between two peers. This is because once
m and l are chosen, the security of a pairwise key depends
on z1 and z2 according to Eqn.1, 2 and 3. Since E(z1)
is independent of d, E(z2) is also independent of d when
achieving a desired level of security, p0

w. Thus, the total
number of secret shares required is also independent of d.
In addition, we note our protocol usually incurs a very small
communication cost. In Fig. 2 we see only 3.8 shares (to-
tally about 30 bytes if each share is 8 bytes) are necessary

3In our simulations, we used a static network because a pairwise key
establishment usually takes a very short time relative to the velocities of
mobile nodes

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Distance of Two Peers (Number of Hops)

N
um

be
r

of
 s

ec
re

t s
ha

re
s

Total
C1
C2
C3

(pw = 1e−6, w=10,m=200, l=10000)

Figure 2. The number of secret shares and
its composition as a function of distance (in
hops) between two peers

on average to establish a pairwise key that has the security
level pw = 10−6 when w = 10.

Third, the number of secret shares corresponding to C2

increases with d while the number of shares corresponding
to C3 decreases with d. As d increases, more intermediate
nodes can act as proxies and hence more secret shares are
delivered via proxies in Px2 instead of via proxies in Px3.
This is because Px2 proxies are selected in preference to
Px3 proxies in the algorithm in Fig. 1 and the algorithm
terminates once it reaches the desired security. Fig. 2 shows
that almost no indirect paths in C3 are used in a pairwise
key establishment for two nodes at a distance of more than
5 hops.

Impact of Node Density We evaluated the impact of node
density on n by varying the number of nodes in the space
2000m × 2000m. The simulation results show that the im-
pact of node density is very small. However, we found that
some short-distance pairs in a very sparse network cannot
establish a pairwise key that satisfies the required security
level. This is because the peers cannot find enough proxies
in the network. In this case, they may establish their pair-
wise key incrementally through movement as discussed in
Section 3.2 or resort to other means (e.g., through physical
contact [24]).

We note that in our scheme it is the node density rather
than the absolute network size that matters. In a fixed space,
the larger the network size, the more the number of proxies
available. Hence, two nodes can establish a pairwise key
more easily or establish a more secure pairwise key. In this
sense, we consider our scheme to be scalable with the net-
work size.

7Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

100 120 140 160 180 200
2

3

4

5

6

7

8

m(number of keys a node possesses)

N
um

be
r

of
 S

ec
re

t S
ha

re
s

l=2000
l=4000
l=8000
l=10000

(pw = 1e−6, w=10)

Figure 3. The impact of varying m and l on the
number of secret shares required to satisfy
the desired security (pw = 10−6).

Impact of Probabilistic Key Sharing Parameters Fig. 3
shows the impact of l and m on the necessary number (n) of
secret shares used in a pairwise key establishment to achieve
the security level pw = 10−6. We observe that for a fixed l,
n generally decreases with m, while the impact of l seems
to depend on m. In practice, this means a larger m should
be chosen if the memory space of a node allows.

4.2.2 Storage Requirements

The storage requirements of our approach are determined
by the number of keys held by a node, i.e., m. Clearly,
the storage requirements are independent of the size of the
network.

4.3 Security, Performance and Storage Tradeoff

In Fig. 4, we show the security strength of an established
pairwise key when two nodes use all the available logical
paths in classes C1, C2, and C3 to establish their pairwise
key. In the Y-axis, w0 denotes the number of colluding
nodes that are needed to achieve a probability of pw = 10−6

for compromising a pairwise key established by two other
nodes. From the figure we make the following observations.
First, the security of the pairwise key increases with the dis-
tance d between the peers because more proxy nodes be-
come available as d increases, leading to a larger number of
logical paths. Second, increasing both m and l can improve
the security of the pairwise key significantly, although in-
creasing m results in larger storage requirements per node.
For example, when m = 200 and l = 10000, w0 = 45 for
two nodes at a distance d = 5. That is, 45 compromised
nodes have to collude to be able to compromise a pairwise

0 5 10 15
0

10

20

30

40

50

60

Distance of Two Peers (Number of Hops)

N
um

be
r

of
 C

om
pr

om
is

ed
 N

od
es

 N
ec

es
sa

ry

to
 C

om
pr

om
is

e
a

P
ai

rw
is

e
K

ey
 (

w
0)

m=200,l=10000
m=200,l=6000
m=100, l=10000
m=100,l=6000

Figure 4. The number of colluding nodes nec-
essary to compromise a pairwise key (pw =
10−6) when two nodes utilize all available
C1, C2, C3 logical paths between them.

key established by two nodes at a distance of 5 hops, with
a probability of 10−6. This choice of m and l thus provides
strong enough security for most applications.

In Fig. 5, we further show the impact of security level
on the number of secret shares used for key establishment.
We observe that achieving a higher security level requires
a larger number of secret shares to be used and hence will
incur a higher performance overhead. The figure shows that
our protocol can be parameterized to trade performance for
security, and vice versa, as is appropriate for the application
under consideration.

5 Increasing The Availability and Robustness

In the basic scheme presented above, a recipient node
needs to receive all the secret shares to recover the pair-
wise key. To increase the availability of this scheme, we
can instead deploy a (k, n) (k < n) threshold secret sharing
scheme [26, 16]. Such a threshold secret sharing scheme,
based on polynomial interpolation, allows a node receiving
any k (out of the n) shares to recover a pairwise key S,
while no information about S can be determined with less
than k shares. Since the underlying operations are typically
very cheap, it is computationally affordable even for low-
end devices.

There are two scenarios that may benefit from the use
of the above threshold scheme. In the first case, a class C3

proxy fails when it is involved in a pairwise key establish-
ment process. For example, if a C3 proxy node that is a
neighbor of the destination node becomes unavailable due
to node mobility or failure when a secret share that requires
its translation arrives at the destination node, the pairwise

8Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

10
−8

10
−7

10
−6

10
−5

3

3.5

4

4.5

5

5.5

Pw0 (the desired security level)

 N
um

be
r

of
 S

ec
re

t S
ha

re
s

(pw = 1e−6, w=10,m=200, l=10000)

Figure 5. The number of secret shares used
as a function of desired security level

key will not be established in our basic scheme. Using a
threshold scheme addresses this issue because the peers can
establish the pairwise key even without this missing share.
However, since all the secret shares are potentially transmit-
ted over the same physical path between the peers, if one
of the intermediate nodes becomes unavailable, none of the
shares will arrive at the destination. The threshold scheme
does not help in this case. Actually, this means the route be-
tween two nodes is broken and needs to be re-established.
Consequently, the pairwise key establishment process also
needs to be restarted.

In the second case, a compromised node on a logical path
intentionally drops or alters the share(s) going through it.
Consider the scenario where nodes u wants to establish a
pairwise key with node v. Let a compromised node x be one
of their class C3 proxies. Node x only receives the share
that needs its translation because it is not on the physical
path between u and v. There are two attacks node x could
launch:

• Node x drops its share intentionally. This situation is
the same as in the first case where the proxy node is
unavailable due to mobility or failure. Therefore, us-
ing a threshold scheme will help to defend against this
attack.

• Node x does not drop its share but alters the share to
a random string. As a result, in the basic scheme the
pairwise key node v recovers will be different from the
one node u generates. Unless an appropriate (k, n)
threshold scheme is deployed, node v may recover dif-
ferent pairwise keys. Moreover, in order to achieve
better robustness in the case that an appropriate (k, n)
threshold secret sharing scheme is adopted, it may be

helpful to accompany with each share the hashes of all
the shares.

We note that, under certain circumstances, a threshold
scheme does not guarantee the establishment of a pair-wise
key. For example, a compromised intermediate node drops
all the shares or replaces all the shares with random strings.
This is particularly true in our scheme because typically the
same physical path is used to forward all the shares (i.e., a
quite unique scenario). Actually, these are general attacks
in ad hoc networks and there is no way to prevent a com-
promised node from launching such attacks. The only so-
lution is to identify the malicious node and re-establish a
route avoiding the node. In [18], Marti et al propose us-
ing a watchdog and a pathrater to mitigate this attack. In
[1], Awerbuch et al propose an adaptive probing technique
to detect Byzantine failure. In addition to these techniques,
we may apply the following multi-path scheme to further
mitigate this attack.

The multi-path scheme is applicable when there are mul-
tiple physically disjoint paths between two nodes. Basi-
cally, each path runs one instance of our scheme. As long
as one of the paths work correctly, two nodes will be able to
establish a pairwise key. Moreover, if multiple paths work
correctly, the security of the established pairwise key could
be further enhanced by combining the pairwise keys from
multiple paths. We note many routing protocols propose to
use multiple paths between nodes. For example, for nodes
that are one hop or two hops away, they can find multiple
disjoint paths by simply exchanging their neighbor sets. In
routing protocols such as DSR [14], multiple paths may be
available after the Route Discovery phase is done. Other ex-
amples of multi-path protocols include MP-DSR [17] and
TORA [22].

To summarize, we showed that various approaches can
be used to increase the availability and the robustness of the
basic scheme, at the price of increased computational and
communication costs because more shares need to be gen-
erated and forwarded. In practice, the values of k and n in
a (k, n) threshold scheme and the number of disjoint multi-
paths to use are both application dependent. We note that
although the basic scheme is less robust to various attacks,
it provides the necessary security guarantee. That is, the
peers can determine if the pairwise key establishment pro-
cess succeeds or not by exchanging the verifying HELLO
message in the last step of the basic scheme.

6 Conclusions

In this paper, we have presented a scalable protocol for
pairwise key establishment in ad hoc networks. The estab-
lished pairwise key can be used to bootstrap trust relation-
ship between nodes. The design of our protocol is based on

9Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

a novel combination of threshold secret sharing and proba-
bilistic key sharing. Our protocol has the following proper-
ties:

• It is fully distributed – no on-line key server is re-
quired.

• It is computationally efficient – it relies only on sym-
metric cryptography.

• It is storage scalable – the storage requirements per
node depend on the desired level of security and are
independent of the size of the network.

• It is secure to a collusion attack by up to a certain num-
ber of compromised nodes.

Acknowledgements We thank Peng Ning, Yongge Wang
and the anonymous reviewers for their valuable comments
and suggestions.

References

[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru and H. Rubens. An
On-Demand Secure Routing Protocol Resilient to Byzantine
Failures. In ACM Workshop on Wireless Security (WiSe)
2002.

[2] A. Bagchi, A. Chaudhary, M. Goodrich, and S. Xu.
Constructing Disjoint Paths for Secure Communication.
DISC’03, to appear.

[3] M. Brown, D. Cheung, D. Hankerson, J. Hernandez,
M. Kirkup, and A. Menezes. PGP in Constrained Wire-
less Devices. In 9th USENIX Security Symposium, pages
247261, August 2000.

[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
B. Pinkas, Multicast Security: A Taxonomy and Some Ef-
ficient Constructions. IEEE Infocom’99. Long Beach, CA,
USA, Oct. 2001.

[5] H. Chan, A. Perrig, D. Song. Random Key Predistribution
Schemes for Sensor Networks. To appear in Proc. of the
IEEE Security and Privacy Symposim 2003, May 2003.

[6] D. Dolev. The Byzantine generals strike again. In J. of Al-
gorithms, 3:14-30, 1982.

[7] Y. Desmedt and Y. Wang. Perfectly secure message trans-
mission revisited. In Advances in Cryptology EUROCRYPT
’02, Lecture Notes in Computer Science (LNCS). Springer-
Verlag, 2002.

[8] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Se-
cure Message Transmission. JACM, (40)1, 1993, pp 17-47.

[9] P. Erdos, P. Frankl, and Z. Furedi. Families of Finite Sets in
Which no Set Is Covered by the Union of r Others. Israel J.
Math. 51(1985), 75-89.

[10] L. Eschenauer and V. Gligor. A Key-Management Scheme
for Distributed Sensor Networks. In Proc. of ACM CCS
2002

[11] M. Franklin and R. Wright. Secure communincation in min-
imal connectivity models. In Journal of Cryptology, 13(1):9-
30, 2000.

[12] O. Goldreich, S. Goldwasser, and S. Micali, How to Con-
struct Random Functions, Journal of the ACM, vol. 33, no.
4, 1986, pp 210-217.

[13] L. Gong. Increasing Availability and Security of an Authen-
tication Service. IEEE Journal on Selected Areas in Com-
munications, 11(5):657–662, 1993.

[14] D. Johnson, D. Maltz, Y. Hu, J.Jetcheva. The Dynamic
Souce Routing Protocol for Mobile Ad Hoc Networks.
Internet-Draft, draft-ietf-manet-dsr-07.txt, February 2002.

[15] J. Kohl and B. Neuman. The Kerberos Network Authentica-
tion Service (V5). RFC 1510, September 1993.

[16] S. Kothari. Generalized Linear Threshold Scheme. Ad-
vances in Cryptology - CRYPTO’84, LNCS 196, pp 231-
241, 1984.

[17] R. Leung, J. Liu, E. Poon, Ah-Lot. Chan, B. Li. MP-DSR:
A QoS-Aware Multi-Path Dynamic Source Routing Proto-
col for Wireless Ad-Hoc Networks. In Proc. of 26th An-
nual IEEE Conference on Local Computer Networks (LCN
2001), 132-141.

[18] S. Marti, T. Giuli, K. Lai, M. Baker. Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks. In Proc. of ACM
MOBICOM, 2000.

[19] C. Mitchell and F. Piper. Key Storage in Secure Networks.
Discrete Applied Mathematics. 21(1988). pp 215-228.

[20] R. Needham and M. Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. In Com-
muinications of the ACM 21(12): 993-999, 1978.

[21] D. Otway , O. Rees, Efficient and Timely Mutual Authenti-
cation, Operating Systems Review, 21 (1987), 8-10.

[22] V. Park and S. Corson. Temporaly-ordered routing algo-
rithm. Internet Draft, August 1998.

[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
SPINS: Security Protocols for Sensor Networks. In Seventh
Annual ACM International Conference on Mobile Comput-
ing and Networks(Mobicom 2001), Rome Italy, July 2001.

[24] F. Stajano and R. Anderson. The Resurrecting Ducking: Se-
curity Issues for Ad-hoc Wireless Networks. In the 7th In-
ternational Workshop on Security Protocols,1999.

[25] D. Stinson and R. Wei, Some New Bounds for Cover-Free
Families. In J. Combin. Theory A, 90(2000), 224-234.

[26] A. Shamir. How to Share a Secret. Comm. ACM,
22(11):612–613, 1979.

10Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03)

1092-1648/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

