
A Performance Evaluation of Intrusion-Tolerant
Routing in Wireless Sensor Networks

Jing Deng, Richard Han, and Shivakant Mishra

University of Colorado at Boulder, Computer Science Department
{jing,rhan,mishras}@cs.colorado.edu

Abstract. This paper evaluates the performance of INSENS, an INtru-
sion-tolerant routing protocol for wireless SEnsor Networks. Security in
sensor networks is important in battlefield monitoring and home security
applications to prevent intruders from eavesdropping, from tampering
with sensor data, and from launching denial-of-service (DOS) attacks
against the entire network. The resilience of INSENS’s multipath perfor-
mance against various forms of communication-based attacks by intrud-
ers is evaluated in simulation. Within the context of INSENS, the paper
evaluates implementations on the motes of the RC5 and AES encryp-
tion standards, an RC5-based scheme to generate message authentica-
tion codes (MACs), and an RC5-based generation of one-way sequence
numbers.

1 Introduction

Wireless sensor networks (WSNs) are rapidly emerging as an important new area
in the research community. Applications of WSNs are numerous and growing,
and range from indoor deployment scenarios in the home and office to outdoor
deployment scenarios in natural, military and embedded settings. For military
settings, dispersal of WSNs into an adversary’s territory enables the detection
and tracking of enemy soldiers and vehicles. For home/office environments, in-
door sensor networks offer the ability to monitor the health of the elderly and to
detect intruders via a wireless home security system. In each of these scenarios,
lives and livelihoods may depend on the timeliness and correctness of the sensor
data obtained from dispersed sensor nodes. As a result, such WSNs must be
secured to prevent an intruder from obstructing the delivery of correct sensor
data and from forging sensor data [1] [2] [3]. To address these issues, this paper
develops a secure routing system that is resilient to attempts to obstruct data
delivery, and in so doing also develops end-to-end data integrity checksums and
authentication schemes that can be used to detect tampering with sensor data.

The design and implementation of secure routing in WSNs must simultane-
ously address three difficult research challenges. First, wireless communication
among the sensor nodes increases the vulnerability of the network to eavesdrop-
ping, unauthorized access, spoofing, replay and denial-of-service(DOS) attacks.
Second, the sensor nodes themselves are highly resource-constrained in terms of
limited memory, CPU, communication bandwidth, and especially battery life.



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

Fig. 1. Sample asymmetric WSN topology rooted at the base station. Triangle node
is a malicious node. Black nodes are its downstream nodes. Intrusion-tolerant routing
is assisted by multiple paths; downstream nodes can still communicate with the base
station.

These resource constraints limit the degree of encryption, decryption, and au-
thentication that can be implemented on individual sensor nodes, and call into
question the suitability of traditional security mechanisms such as compute-
intensive public-key cryptography. Third, WSNs face the added physical secu-
rity risk of being deployed in the field, so that individual sensor nodes can be
obtained and subject to attacks from a potentially well-equipped intruder in or-
der to compromise a single resource-poor node. Following a successful attack, a
compromised sensor node could then be used to instigate such malicious activi-
ties as advertising false routing information, possibly unbeknownst to the sensor
network, and launching DOS attacks from within the sensor network.

Given these threats and resource constraints, our approach for securing WSNs
concedes that a well-equipped intruder can compromise individual sensor nodes,
but that the overall design of our secure routing system should tolerate these
intrusions such that the network as a whole remains functioning. We assume that
the base station has considerably more resources to defend itself against attacks,
and therefore concentrate on securing the system against attacks on the weakest
links, namely the resource-poor sensor nodes. We have designed and implemented
an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS(INSENS)
[14] that has the property that a single compromised node can only disrupt
a localized portion of the network, and cannot bring down the entire sensor
network.

The INSENS secure routing system adheres to the following design principles.
First, to prevent DOS-style flooding attacks, individual nodes are not allowed
to broadcast to the entire network. Only the base station shown in Figure 1 is
allowed to broadcast. The base station acts as a gateway to the wired world, e.g.
a satellite uplink connecting to terrestrial networks. The base station is loosely

2



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

authenticated via a one-way sequence number, so that individual nodes cannot
arbitrarily spoof the base station and thereby flood the network. Sensor nodes are
restricted to only unicasting a packet, and then only to the base station, thereby
preventing DOS/DDOS broadcast attacks. Peer-to-peer sensor communication
is not directly supported, though tunneling through the base station permits in-
direct sensor-to-sensor communication. Second, to prevent advertisement of false
routing data, control routing information must be authenticated. A key conse-
quence of this approach is that the base station always receives knowledge of the
topology that is correct, though it may only represent a partial picture due to
malicious packet dropping. Third, to address resource constraints, 1) symmetric
key cryptography is chosen for confidentiality and authentication between the
base station and each resource-constrained sensor node, since it is considerably
less compute-intensive than public key cryptography, and 2) the resource-rich
base station is chosen as the central point for computation and dissemination of
the routing tables. Fourth, to address the notion of compromised nodes, redun-
dant multipath routing is built into INSENS to achieve secure routing, as shown
in Figure 1. The goal is to have disjoint paths so that even if an intruder takes
down a single node or path, secondary paths will exist to forward the packet to
the correct destination.

In the remainder of the paper, we provide an overview of the INSENS sys-
tem in Section 2, present simulation results in Section 3, an implementation of
INSENS in Section 4, and address related work in Section 5.

2 Protocol Description

In this section, we provide a brief overview of INSENS. For a more detailed
description, see [14]. INSENS is comprised of a route discovery phase and a
data forwarding phase. The route discovery phase ascertains the topology of the
sensor network and builds appropriate forwarding tables at various nodes. Route
discovery is subdivided into three rounds. In the first round, the base station
floods (limited flooding) a request message to all the reachable sensor nodes in the
network. In the second round, each sensor node send its neighborhood topology
information back to the base station using a feedback message. In the third
round, the base station authenticates the neighborhood information, constructs
a topological picture of the network, computes the forwarding tables for each
sensor node, and sends the tables to the respective nodes using a routing update
message. The data forwarding phase enables forwarding of data from each sensor
node to the base station, and vice versa. A symmetric communication channel
is assumed, i.e. if node a can hear a message from node b, then a can send a
message to b.

Each node has a shared symmetric key with base station. Every node also
possesses a globally known one-way function F and initial sequence number
K0. F and K0 are used together to loosely authenticate messages from the base
station, as explained next. All three pieces of information, namely F , K0, and the
shared symmetric key, are distributed in advance, i.e. they are preprogrammed

3



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

into each sensor node before deployment. We envision that military applications
will for example permit secret keys to be preprogrammed into sensor nodes before
deployment.

2.1 Route Discovery: Route Request

The base station initiates the first round whenever it needs to construct the
forwarding tables of all sensor nodes. The base station broadcasts a request
message that is received by all of its neighbors. A request message broadcast
by a node x includes a path from the base station to x. When a node receives
a request message for the first time, it forwards (broadcasts) this message after
appending its identity in the path. It also records the identity of the sender
of this message in its neighbor set. When a node receives a duplicate request
message, the identity of the sender is added to its neighbor set, but the request
is not rebroadcast.

A malicious node in the network can attempt to launch several attacks in
this round. First, it can attempt to spoof the base station by sending a spurious
request message. Second, it can include a fake path in the request message it
forwards. Third, it may not forward a request message, or launch a DOS at-
tack by repeatedly sending several request messages. We use two mechanisms
to counter these attacks. Both of these mechanisms require sensor nodes to be
pre-configured with appropriate values.

First, the base station uses a one-way cryptographic hash function F to gen-
erate a sequence of numbers K0,K1, . . . ,Kn, such that Ki = F (Ki+1), where
0 ≤ i < n. Initially, every node knows F and K0. In the first route discovery
phase, the base station includes K1 in the request message that it broadcasts. In
general, the base station uses Ki in the ith route discovery phase. Each node can
verify that the sequence number did indeed originate from the base station by
computing Ki = F (Ki+1). An attacker who compromised a sensor node would
be unable to guess the next one-way sequence number given the most recent
sequence number, i.e. given F , K0, and the most recent sequence Ki, the at-
tacker cannot invert F to generate the next sequence number Ki+1. As a result,
a compromised node cannot spoof the base station by generating new sequence
numbers. However, a compromised node could repeat the current sequence num-
ber in a request message to its downstream nodes, who would then believe that
the compromised node is the base station. The damage in this case is localized to
the compromised node, which was our design objective. The rest of the network
will receive the authentic base station’s route request first, and will therefore
ignore the compromised node’s route request. Our usage of one-way functions
leverages the approach taken by the µTESLA protocol [10], but differs in the
sense that the numbers in the one-way chain are sequence numbers rather than
symmetric keys.

The second mechanism that we use is a keyed MAC algorithm. Each sensor
node is configured with a separate secret key that is shared only with the base
station. When a node x receives a request message for the first time, it appends
its identity to the path list, and then generates a MAC of the complete new

4



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

path with its key. This MAC is also appended to the request message, before the
modified request message is forwarded downstream. This MAC will eventually
be used by the base station to verify the integrity of the path contained in the
packet. Also, when a node is compromised, only one secret key is revealed, so an
attacker cannot compromised the entire network.

The overall effect of these security mechanisms is that a malicious node can
attack in the first round only by localized flooding, by not forwarding a request
message, and by sending fake path in the request which is later on detected
in the second round. The latter two attacks will result in some of the nodes
downstream from the malicious node not getting a request message or not being
able to forward their feedback message to the base station in the second round.

2.2 Route Discovery: Route Feedback

In the second round, each sensor node sends its local connectivity information (a
set of identities of its neighbor nodes as well as the path to itself from the base
station) back to the base station using a feedback message. After a node x has
forwarded its request message in round one, it waits for a certain timeout interval
before generating a feedback message. During this time interval, it listens to the
local broadcasts from neighboring nodes forwarding the same request message,
and stores the neighbor’s identity and the neighbor’s MAC embedded within the
request message. After the timeout, the sensor node will send its list of neighbors
(upstream, peer, and downstream) back to the base station, where each neighbor
is identified by the neighbor’s identity and the neighbor’s MAC. The sensor node
applies its keyed MAC to the topology data, i.e. the list of neighbors, to further
protect the integrity of the feedback message. The messages that reach the base
station are guaranteed after verification to be correct and secure from tampering.

Routing of the feedback message from a node x to the base station follows the
reverse path taken by the request message that initiated the feedback response.
To ensure that malicious nodes do not generate false paths while forwarding a
feedback message, a node places its parent identification information along with
its parent’s MAC, that it received in the first request message. Each node will
choose one legitimate upstream parent, forming a parental chain of nodes back
to the base station. A compromised node will at most be able to flood each of
its parents’ chains back to the base stations, but no other nodes. This localizes
the effect of an attack. To further restrict attacks, rate control is applied at each
node; regardless of the incoming traffic rate, the outgoing traffic rate of each
node is restricted to some maximum rate, thereby preventing flooding. Also,
each node encrypts appropriate information in the feedback message it sends to
provide confidentiality against eavesdropping by a malicious node.

The overall effect of these security mechanisms is that a malicious node is
limited in the damage it can inflict, whether attacking by DOS attack, by not
forwarding a feedback message or by modifying the neighborhood information
of nodes, which can be detected at the base station. These attacks will result
in some of the nodes down-stream from the malicious node not being able to

5



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

provide their correct connectivity information to the base station. Though a ma-
licious node could launch a battery-drain attack by persistently sending spurious
feedback messages at the rate-controlled limit, such an attack would still affect
only a limited number of upstream nodes.

2.3 Route Discovery: Computing and Propagating Multipath
Routing Tables

After sending its request message in the first round, the base station waits for
a certain period of time to collect all the connectivity information received via
feedback messages. Each node returns an authenticated list of its neighboring
nodes. As a result, the base station is able to verify the neighbor information
and detect tampering with feedback messages. The base station constructs a
topology of the network from these authenticated feedback messages, though this
picture of the network may be incomplete due to dropped feedback messages.
From this connectivity information, the base station computes the forwarding
tables of each node in the network.

INSENS incorporates redundancy in routing by building multiple redundant
paths to bypass intruders while routing messages, as shown in Figure 1. These
paths are independent of one another in the sense that they share as few com-
mon nodes/links as possible; ideally, only the source and the destination nodes
are shared among paths. The presence of one or more intruders along some of
these paths can jeopardize the delivery of some of the copies of a message. How-
ever, as long as there is at least one path that is not affected by an intruder,
the destination will receive at least one copy of the message that has not been
tampered with.

While INSENS is largely agnostic to the particular criteria for choosing mul-
tiple paths, we chose the following multipath heuristic in order to proceed with
our implementation of INSENS. For a sensor node A, the first path from A to
the base station is chosen using Dijkstra’s shortest path algorithm. To determine
the second path, three sets of nodes, S1, S2, and S3 are first constructed. S1 is
the set of nodes belonging to the first path, S2 is the set of nodes belonging to S1

and any neighbor nodes of the nodes in S1, and S3 is the set of nodes belonging
S2 and any neighbor nodes of the nodes in S2. All three sets exclude A or the
base station. The second path is then computed as follows:

1. Remove all nodes in S3 from the network, and find the shortest path from
A to the base station. If such a path is found, terminate the computation.
The path found is the second path.

2. Otherwise, remove all nodes in S2 from the original network. Find the short-
est path from A to the base station. If such a path is found, terminate the
computation. The path found is the second path.

3. Remove all nodes in S1 from the original network. Find the shortest path
from A to the base station. If such a path is found, it is the second path.
Otherwise, there is no second path from A to the base station.

6



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

Notice that depending on the network topology, it is possible that no second
path is found. In that case, the current implementation of INSENS maintains
only a single path. Finding a better algorithm to compute multiple paths in
INSENS is part of our future work.

After computing the redundant paths for each node, the base station com-
putes the forwarding tables of each node. These forwarding tables are propagated
to the respective nodes in a breadth-first manner. The base station first sends
the forwarding tables of all nodes that are its immediate neighbors. It then
sends the forwarding tables of nodes that are at a distance of two hops from it,
and so on. This mechanism cleverly uses the redundant routing mechanism just
built to distribute the forwarding tables. Standard security techniques such as
those proposed in [10] can be used to preserve the authentication, integrity, and
confidentiality of the forwarding tables.

2.4 Data Forwarding

A node maintains a forwarding table that has several entries, one for each route to
which the node belongs. Each entry is a 3-tuple: <destination, source, immediate
sender>. Destination is the node id of the destination node to which a data
packet is sent, source is the node id of the node that created this data packet,
and immediate sender is the node id of the node that just forwarded this packet.
For example, given a route from node S to D: S → a → b → c → D, the
forwarding table of node a will contain an entry < D, S, S >, forwarding table of
b will contain an entry < D, S, a >, and the forwarding table of c will contain an
entry < D, S, b >. With forwarding tables constructed in this way, forwarding
data packets is quite simple. On receiving a data packet, a node searches for a
matching entry <destination, source, immediate sender> in its forwarding table.
If it finds a match, it forwards (broadcasts) the data packet.

3 Simulation

We have simulated INSENS on nsclick [16], a network simulation tool that com-
bines the ns-2 network simulator with the Click Modular Router. We imple-
mented our own Click element to simulate the behavior of INSENS on sensor
nodes and the base station. Ns-2 was used to simulate the wireless network en-
vironment, including the MAC (Medium Access Control) protocol and the lower
layers of the wireless network, as well as the geographic distribution of nodes.

3.1 Malicious Attack During Data Forwarding

INSENS builds two paths to bypass malicious nodes. With two independent
routes available between every node and the base station, our protocol’s goal is to
route messages correctly in the presence of a single malicious node. Interestingly,
our protocol deals quite well with multiple malicious nodes as well. We have
performed a set of experiments to measure the number of nodes that can be

7



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

blocked when a set of multiple nodes turn malicious and drop data packets.
Figure 2 shows the average number of nodes that can be blocked as a function
of the number of malicious nodes. For comparison, we have also calculated this
number when a single-path routing algorithm is used instead.

These results are based on a network of 100 nodes and 200 nodes randomly
distributed over a 1500×1500m2 space. The numbers reported in this figure are
averaged over 50 different combinations of nodes randomly selected to be mali-
cious. For example, for 10 malicious nodes, we measured the number of blocked
nodes for 50 different combinations selected randomly of 10 nodes turning ma-
licious. For each test, 20 random topologies were chosen.

Fig. 2. Multi-node attack on a sensor network that has secure single path and multipath
routing. Left graph shows 100 nodes, and right graph shows 200 nodes. X axis: #of
attacking nodes. Y axis: #of blocked nodes unable to send packets.

3.2 DOS Attacks

We have performed a set of experiments to analyze the effect of DOS attacks
that a malicious node may launch. The DOS attack we have simulated in these
experiments is comprised of repeatedly sending data packets to the base station
to block the wireless medium and not allow other nodes to send their data
packets. DOS attacks are difficult to address completely at the network level. In
our opinion, these attacks must be addressed at multiple levels. In our analysis,
we have assumed the following: (1) Sensor nodes use an appropriate rate-based
control mechanism while forwarding data packets. This implies that a malicious
node that repeatedly sends data packets will be able to block its neighbors, but
not other (upstream) nodes. (2) The base station has sufficiently large bandwidth
available so that a malicious sensor node in its vicinity cannot block the base
station by using a DOS attack.

Figure 3 shows the damage a malicious node may cause by launching a DOS
attack. The damage caused by a DOS attack depends on the effectiveness of
multi-path routing, the density of interconnection of the sensor network, and

8



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

the topology of the graph. In this experiment, two network densities (sparse and
dense) and two topologies (random and grid) are tested. In random generated
topologies, the position of each node is randomly selected, and the base station is
positioned in the center. The total number of nodes for each random topology is
200. In the grid topology, each node is placed on a square grid. To accommodate
the simulator, it was necessary to perturb each position to a small region around
each vertex in a square grid graph. In this way, random topologies could be
generated even for a nearly uniform square grid. The grid is a 14× 14 square.

Fig. 3. Histograms of simulated DOS attacks for sparse and dense random and grid
topologies.

Figure 3 reveals the performance of INSENS against a single node launching
a DOS attack. For either uniform grids or random positioning, we first generate
a given topology of scattered nodes. For this topology, we let each node at a time
become a DOS intruder and measure the number of blocked nodes downstream
affected by the DOS intruder. This generates a histogram per topology. The x-
axis records the percentage of nodes that may be blocked by a single-node DOS
attack, and the y-axis records the percentage of such nodes in the topology who,
if they turned malicious, would have the power to block the number of nodes
listed in the x-axis. For clarity, we have grouped the x-axis into bins of 0-5 %,
6-10 %, etc. For both random and grid topologies, we generate 50 such topologies
and plot the averaged histogram shown above.

9



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

From this figure, we can see that the protection against DOS attacks varies
significantly across different network densities and different topologies. As ex-
pected, in all cases, the multi-path algorithm provides better protection against
DOS attacks than the single path approach. The multi-path approach performs
far better for the grid topology, because the grid nearly always offers a valid
redundant second path. The best performance of the multi-path approach is
obtained for sparse grids (upper right graph), where 85% of intruder nodes are
limited to blocking five or fewer nodes. The sparseness limits an intruder to
blocking only a few nodes, while the grid almost always offers the sender a valid
secondary path. The worst performance of the multi-path approach is obtained
for sparse random topologies (upper left graph), in which nodes have few neigh-
bors and few alternate paths (usually only one path) to the base station. In
this case, the multi-path approach performs only slightly better than single path
routing.

As the network becomes denser, moving from the top row of graphs to the
bottom row in Figure 3, attackers are able to block increasing numbers of nodes,
and the histograms shift to the right. This is true for both random and grid
topologies.

While the figures measure the average response of INSENS, an attacker would
benefit by exploiting the topology’s structure and identifying the weakest nodes
that would partition the graph. Such a partitioning attack would be largely
ineffective in grids and/or dense topologies, because such topologies do not easily
partition because of alternate paths. Partitioning is a more effective attack for
topologies that are both random and sparse. We have not specifically measured
INSENS’s performance against such a partitioning attack.

4 Implementation

In our implementation, we use UC Berkeley MICA sensor motes [13] as the sen-
sor nodes. The program runs on Atmel Atmega128 microcontroller. The motes
support a 4MHZ processor with 128K Bytes code memory and 4K Bytes internal
data memory, and an RFM Monolithics TR 1000 radio at 19.2Kbps. INSENS
is running on TinyOS 1.0, which is a small, open source, event-driven, energy
efficient operating system developed for sensor networks at UC Berkeley.

4.1 Cryptographic Algorithm

To implement INSENS on motes, we need to choose a secure, efficient crypto-
graphic algorithm that can operate correctly, given the resource constraints of
motes. To save memory, we should reuse a single cryptographic algorithm for
data encryption, MAC generation, and one-way sequence number, as long as
their implementations are secure. We chose RC4, RC5, and Rijndael (AES) as
candidates. RC5’s implementation varies according to the number of rounds.
More rounds result in higher security, but require more resources. We imple-
mented RC5 with 5 rounds and 12 rounds. The output of 5 rounds is statis-
tically no different from a random number, and 12 rounds is recommended by

10



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

Rivest [17]. We tested the performance of a stream cipher RC4 to compare its
performance with block cipher algorithms. RC4 is a very fast stream cipher, but
has some weaknesses when used in wireless networks. [18] We also implemented
Rijndael on the motes and compared its performance with RC5. We used a stan-
dard version of Rijndael [19]. It uses about 1KB memory. There is a fast version
that uses about 4KB lookup tables, but that exceeds the memory capabilities of
the mote.

To measure performance, we implemented RC4, RC5, and Rijndael on motes
to encrypt 200×128 bits of data with CBC mode. To measure the speed of these
algorithms on motes, we let the base station send a “begin” signal to a mote.
On receiving this signal, a mote begins its computation, and after completing
the computation, it sends back the result to the base station. The base station
records the time interval between when it sent the signal and when it got the
data back, verifies the result, subtracts the round-trip time (which is measured in
the same way without the mote doing any encryption), and gets the computing
time. For each algorithm, we tested it for 20 times. Table 1 shows the calculated
average time for computing 128 bits of data for each algorithm.

From Table 1 we see that: 1) RC5 is a good candidate for motes. It uses less
memory (both in code size and data size), and it is very efficient. 2) Compared
with RC5, Rijndael is very slow. Based on our result, to encrypt a 30Bytes
packet, it would spend about 0.2 seconds. However, we believe that in the near
future, as sensor nodes become faster and acquire more memory, Rijndael will
become a good candidate for cryptographic algorithm on sensor networks. In
our implementation, we used RC5 with 5 rounds. We think it is good enough for
sensor networks. We can also use RC5 with 12 rounds.

Table 1. Cryptographic Algorithm Overhead

RC4 RC5 AES
5 Rounds 12 Rounds

Speed (128bits/ms) 1.299 5.471 12.475 102.483

Data Size (B) 258 68 124 1165

Code Size (B) 580 1436 1436 9492

We have also implemented RSA public key cryptography on the mote plat-
form and report the following preliminary results. We decrypted 64 bytes of data
on the mote with a 1024-bit RSA public key. We found that the measured de-
lay for decryption was approximately 15 seconds. This suggests that public key
cryptography could be used in a limited way, e.g. for symmetric key exchange,
for certain sensor networks. We also attempted to implement encryption with an
RSA private key on the mote, but found that the encryption code died during
execution. We hypothesize that encryption exceeded the mote’s memory capac-
ity, since RSA encryption consumes more memory than decryption, though more
tests are needed to confirm this hypothesis.

11



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

Message Authentication Code generation MAC plays a critical role in
INSENS. It is used to authenticate each node, its path, and its neighbor infor-
mation. We use standard CBC mode to generate MAC with block cipher RC5
[20].

Fig. 4. CBC-based MAC generation

One-way sequence number generation The one-way sequence number is
used to loosely authenticate the base station. To generate the one-way sequence
number, we need a secure one-way function. Our approach is based on the follow-
ing criteria: By knowing a plaintext and the corresponding ciphertext computed
using a block cipher algorithm, such as RC5, we cannot know the key that
was used to generate the ciphertext. Our one-way sequence number generator is
shown in Figure 4(b). The base station chooses a random key Kn and uses it to
encrypt a well-known plaintext and gets a cipher. This cipher is Kn−1 and the
base station uses it as a key to encrypt the same known plaintext. This process
continues until we get K0.

4.2 Implementation Issues

Base Station and Node We implemented base station in Java. The base sta-
tion gets information from the mote on the programming board and processes
the information, and sends routing tables back to each mote. In our implemen-
tation, we used the same strategy described in [14] to find two paths for each
node. But we choose BFS (Breadth First Search) algorithm instead of Dijkstra
because we assume the cost of each link is same. We implemented INSENS on
TinyOS 1.0 with NesC. All of our computing intensive functions are written as
tasks, to prevent them from blocking packets or timer interrupts.

Feedback Message Segmentation On the current TinyOS, the default packet
size is 30 bytes, though this can be modified. However the feedback message of
INSENS can be far longer, because it contains an authenticated list of neighbors.
In our implementation, we segment one feedback message into multiples of 30
byte feedback packets. We add two constraints for feedback packet segmentation

12



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

to make it work with INSENS and prevent possible attacks. 1) Every segment
packet has a sequence number. Any node must forward lower sequence packet
before forwarding a higher sequence packet. When a node gets a higher sequence
packet while it hasn’t got a lower sequence packet, it must drop that packet. 2)
The whole path information must be put in the first packet. Upstream nodes
need it to forward packets. That limits the longest path at 9. This is suitable for
a moderately sized network. Because every feedback message contains a MAC
number, which is generated by CBC mode, the malicious node cannot change
the sequence of segment packet, or replace a segment packet. The base station
can verify the integrity of feedback message sequence packets with the MAC.

Packet Loss During our experiments, we found that there were many packet
losses. The reasons for this may be: 1) The MAC (media access control) layer
of TinyOS cannot deal with loss of packets, and INSENS needs to send lots of
packets. 2) The packet sending/receiving components of TinyOS cannot receive
packets in time.

We employed the following methods to alleviate packet loss. First, random
delay is introduced in each mote before forwarding to reduce collisions. Second,
when a mote gets a packet, it copies the packet to its frame variable immedi-
ately. With these mechanisms, the packet loss was significantly reduced. We note
improved MAC protocols [15] could be adopted in the future.

4.3 Performance Evaluation

We have implemented INSENS on motes to build 3-node, 6-node and 10-node
networks. Figure 5(a) shows the network topology setup by INSENS for a net-
work of 6 nodes. Every node has its own routing table to route packets. We see
that the node 5 has two paths to base station, the first goes through node 6, the
second traverses nodes 4 and 1. Because of packet losses, the base station cannot
obtain complete network topology information, yet it can still build part of the
network based on the request and feed-back messages that do arrive. This is an
important feature of INSENS. We measured the memory usage of INSENS and
total time to setup the whole network with INSENS, to assess the practicality
of INSENS.

Memory Usage of INSENS on Motes Table 2 shows the memory usage of
INSENS. “Feedback” is for saving the whole feedback message before segment-
ing it. “Packet” is for saving the incoming packets. In our implementation, we
didn’t focus on saving memory space, but the result shows that the memory
requirements of INSENS can be easily satisfied by the constraints of current
mote-based sensor networks. Additional memory savings could be achieved. For
example, with a good packet processing mechanism, we don’t need “packet”
space, and with a better packet segmentation implementation, we don’t need
“feedback”.

13



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

Table 2. Memory Consumption of INSENS (Unit:byte)

code total data Crypto neighbor info msg & MAC feedback packet OS and others

19000 1200 68 105 105 200 360 360

Network Setup Time In our implementation, the base station broadcasts
a request message, receives all feedback messages, and computes the routing
tables. It sends each node’s routing table, and waits for a “routing table received”
message from every node. We measure the time interval between the time the
base station broadcasts its request message and the time it gets all “routing
table received” messages. We set the network as a dense network, so every node
has several neighbors. As the number of nodes increased, we experienced more
packet losses. But because of the redundancy in neighbor information, the base
station was usually able to setup the network based on the limited number of
feedback messages that did arrive.

There are several factors affecting the setup time: 1) execution time of cryp-
tographic algorithm, 2) execution time of packet processing, such as sending,
receiving, copying, and routing, and 3) waiting time in INSENS, that includes
random delay, feedback message waiting time, and the base station waiting time.
The base station waits at most 500 ms after receiving a feedback packet. This
wait time is reset with each new feedback message. Eventually, no more feedback
messages will arrive and the base station will timeout and move on to comput-
ing the routing tables. Each sensor node also waits at most 500 ms for neighbor
information to be collected. We also tested 700 ms timeouts for the sensor nodes
only (not base station). The base station unicast a custom routing table to each
mote, and waits 100 ms between sending each routing table. We found that the
total network setup time is dominated by the waiting time of the sensor nodes.
In comparison, the computation time of RC5-based cryptographic algorithms is
relatively short. Figure 5(b) shows our aggregate test results.

Fig. 5. (a) Routing tables built by INSENS (b) Network setup time

14



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

5 Related Work

Sensor network security is a critical issue in sensor network research [4]. Ganesan
et al propose a redundant “multipath” routing approach for a sensor network
[5] in order to provide fault tolerance and reliable data dissemination. INSENS
is largely agnostic to the particular multipath approach employed.

In the field of ad hoc wireless networking, previous work on secure routing
employs public key cryptography to perform authentication [6] [4] [7] [8] [9].
Unfortunately, resource constraints in sensor network limit the applicability of
these current public/asymmetric key standards.

SPINS [10] addresses secure communication in resource-constrained sensor
networks, introducing two low-level secure building blocks, SNEP and µTESLA.
Our work uses ideas from SNEP and µTESLA to build INSENS. Like µTESLA,
we employ one-way functions, but differ in the sense that the numbers in the
one-way chain are sequence numbers rather than symmetric keys. In addition,
we are not constrained by time synchronization or a delayed release schedule.

SEADS [11] and Ariadne [12] use symmetric cryptography, a one-way hash
function, TESLA, and MACs to build secure wireless network routing. INSENS
differs in that it focuses on an asymmetric or hierarchical architecture with a
base station and sensors, rather than on peer-to-peer routing.

Staddon et al [21] proposes an efficient algorithm to trace failed nodes in
sensor network. Their work also puts intensive computing on the base station,
and employs route discovery in a manner similar to our first two rounds. The
paper does not address the issue of compromised nodes.

6 Conclusions

In this paper, we have provided an experimental evaluation of INSENS, which is
an intrusion-tolerant routing protocol for wireless sensor networks. The resilience
of INSENS’s multipath performance against various forms of communication-
based attacks by intruders is evaluated in simulation. The paper describes prac-
tical experiences with implementations of RC5 and AES encryption standards on
motes, an RC5-based scheme to generate message authentication codes (MACs),
and an RC5-based generation of one-way sequence numbers.

References

1. Wood, A., Stankovic, J.: Denial of Service in Sensor Networks, IEEE Computer,
Oct 2002, pp. 54-62.

2. Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbeck, S., Srivastava, M.: On Com-
munication Security in Wireless Ad -Hoc Sensor Networks, Eleventh IEEE In-
ternational Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’02), pp. 139-144.

3. Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures, First IEEE International Workshop on Sensor Network Proto-
cols and Applications, May 2003.

15



to appear in IEEE Workshop on Information Processing in Sensor Networks
(IPSN) 2003

4. NAI Lab: http://www.nai.com/nai labs/asp set/crypto/crypt senseit.asp.
5. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly Resilient, Energy Ef-

ficient Multipath Routing in Wireless Sensor Networks. Mobile Computing and
Communica-tion Review (MC2R) Vol 1., No.2. 2002.

6. Kong, J.J., Zerfos, P., Luo, H., Lu, S., Zhang, L.X.: Providing Robust and Ubiqui-
tous Security Support for Mobile Ad-Hoc Networks. International Conference on
Network Protocols (ICNP 2001).

7. Papadimitratos, P., Haas, Z.: Secure Routing for Mobile Ad hoc Networks. Pro-
ceedings of the SCS Communication Networks and Distributed Systems Modeling
and Simula-tion Conference (CNDS 2002).

8. Zhou, L., Haas, Z.: Securing Ad Hoc Networks. IEEE Network Magazine, vol. 13,
no.6, November/December 1999.

9. Zhang, K.: Efficient protocols for signing routing messages. In Proceedings of the
Symposium on Network and Distributed Systems Security (NDSS ’98), San Diego,
Cali-fornia, March 1998.

10. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Proto-
cols for Sensor Networks. Proceedings of Seventh Annual International Conference
on Mobile Computing and Networks MOBICOM 2001, July 2001.

11. Hu, Y., Johnson, D., Perrig, A.: SEAD: Secure Efficient Distance Vector Routing
for Mobile Wireless Ad Hoc Networks. Fourth IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA ’02).

12. Hu, Y., Perrig, A., Johnson, D.: Ariadne: A Secure On-Demand Routing Protocol
for Ad Hoc Networks. Proceedings of the Eighth Annual International Conference
on Mobile Computing and Networking (MobiCom 2002).

13. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for network sensors. ASPLOS 2000

14. Deng, J., Han, R., Mishra, S.: INSENS: Intrusion-tolerant routing in wireless Sen-
sor NetworkS. Technical Report CU CS-939-02, Department of Computer Science,
University of Colorado, November 2002.

15. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. Proceedings of the 21st International Annual Joint Confer-ence
of the IEEE Computer and Communications Societies (INFOCOM 2002), New
York, NY, USA.

16. Neufeld, M., Jain, A., Grunwald, D.: Nsclick: Bridging Network Simulation and
Deployment. MSWiM’02, September 28, 2002. Atlanta, Georgia, USA.

17. Schneier, B.: Applied Cryptography, second edition. John Wiley & Sons, Inc. 1996
18. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: The

insecurity of 802.11. In Proceedings of MOBICOM 2001.
19. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, (2001) 221-227
20. Menezes, A., etc: Handbook of Applied Cryptography. CRC Press, (1996) 353-354.
21. Staddon, J., Balfanz, D., Durfee, G.: Efficient Tracing of Failed Nodes in Sen-

sor Networks. First Workshop on Sensor Networks and Applications, WSNA’02,
Atlanta, Georgia, USA.

16


