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Abstract 
In-network data aggregation is an essential opera- 

tion to reduce energy consumption in large-scale wire- 
less sensor network8. With data aggregation, however, 
raw data i t em are invisible to the base station and 
thus the authenticity of the aggregated data i s  h a d  to 
guarantee. A compromised sensor node may forge an 
aggregation value and mislead the base station into 
trusting a false reading. Due to the stringent con- 
straints of energy supply and computing capability on 
sensor nodes, it is challenging to detect a compromised 
sensor node and keep it from cheating. This paper pro- 
poses a Secure Aggregation Tree (SAT) to detect and 
prevent cheating. Our method is essentially diffeerent 
from other ezisting solutions in that it does not require 
any cryptographic opemtions when all sensor nodes 
work honestly. The detection of cheating is based on 
the topological constraints in the aggregation tree. 

1 Introduction 
Extremely small sensors have been used broadly 

for various applications such as habitat monitoring, 
battlefield surveillance, and forest fire monitoring. A 
large number of tiny sensors collect measurement data 
and rely on multihop short-range radio communic* 
tion to send data to the processing center, which is 
also called the base station or the sink node. The 
lifetime of sensors depends on effective energy saving 
strategies such as sensor scheduling and in-network in- 
formation processing to reduce the data traffic to the 
base station. One important type of in-network pro- 
cessing is data aggregation. 

While data aggregation can effectively reduce the 
amount of data transmitted to the base station, raw 
data items may he invisible to the hase station and 
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thus their authenticity and integrity are hard to guar- 
antee. As such, data aggregation is potentially vulner- 
able to attackers who may inject bogus information or 
forge aggegated values without being detected. For 
instance, if a sensor close to the base station is com- 
promised, it may claim a fake aggregation value to the 
base station and mislead the hase station into trusting 
the fake information. It may have a disastrous impact 
if end users respond according to the faulty infonna- 
tion. 

Some methods have been proposed to solve the 
above problem [2, 3, 7, 9, 101. Existing meth- 
ods depend on complex data authentication opera- 
tions [2, 3, 101 or the statistical features of specific 
aggregation operations such as the mean, max, and 
min [I, 8, 91. To guarantee correctness, persistent 
authentication operations are used in most existing 
methods. Persistent authentication, though very safe, 
may consume too much energy and is thus undesir- 
able for sensor networks. Resides the energy concern, 
another barrier of using complex cryptographic oper* 
tions is that the calculation capability of sensor nodes 
is very limited. For this reason, cryptographic oper- 
ations may significantly increase the data processing 
delay and renders the network performance intolera- 
ble. 

In this paper, we assume the existence of a secure 
mechanism but use it only when necessary, i.e., only 
when cheating activities are detected. This strategy is 
fundamentally different from existing solutions in that 
its security is based on cheating detection instead of 
persistent data authentication. This strategy can re- 
duce energy consumption and more importantly can 
save the CPU resource. It, however, requires the sup- 
port of a lightweight and scalable cheating detection 
method, which is a quite challenging task. 

This paper is motivated to solve this problem. 
First, it introduces some topological constraints when 
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building a Secure Aggregation n e e  (SAT), which facil- 
itates the monitoring of the behavior of each aggrega- 
tion sensor node. Second, when the aggregated values 
from an aggregation node are in doubt, a weighted 
voting scheme is proposed to decide finally whether 
the aggregation node is properly behaving or is cheat- 
ing. Third, if a misbehaving node is detected, a lo- 
cal recovery scheme is presented to re-build SAT so 
that the misbehaving node is excluded from the ag- 
gregation tree. Since no cryptographic operations are 
required when all nodes work honestly, our method 
is lightweight. Since no centralired operations are 
needed at the base station, our method also scales 
very well. 

2 Assumptions 
We assume that a node cannot impersonate its 

neighbors. This is not a strong assumption since if 
a node, A, is in the promiscuous listening mode, it 
can quickly detect any transmission from its neigh- 
boring nodes with A's IP address. This assumption 
is to exclude the pwibility that a node impersonates 
its father node in the aggregation tree to send false 
aggregated data such that an honest father is voted 
out of the network. 

We assume that two neighboring sensor nodes have 
mechanisms for secure communication so that they 
can decrypt and authenticate each other's messages. 
There are a lot of key distribution methods pro- 
posed for sensor networks tbat can meet this require- 
ment [4, 5, 61. This seemly strong assumption does 
not mean that our method will always use message 
encryption and authentication. In contrast, they are 
used only when cheating behavior is  detected. If all 
sensor nodes work honestly, no cryptographic opera- 
tions are required. 

In this paper, we focus only on the integrity and 
authenticity of data. 

3 Building a Secure Aggregation Tree 
3.1 The structure of SAT 

If we could build an aggregation tree such tbat any 
child node can monitor the behavior of its father node, 
then the cheating activities of any non-leaf (aggrega- 
tion) nodes can be detected. In this paper we do not 
consider the cheating behavior of leaf nodes since it is 
indistinguishable between cheating and malfnnction- 
ing for a leaf node. Obviously, to allow a child node 
to monitor its father node's behavior, it is required 
that the child node should be able to know all the 
messages from its sibling nodes to the father node. In 
other words, a father node together with its children 
nodes should form a clique. 

3.2 A Distributed Algorithm to build 
SAT 

We propose a distributed algorithm, which builds 
the aggregation tree starting from the sink node and 
includes four steps as follows. 

1. Step 1: The sink node locally broadcasts an in- 
vitation message to all of its one-hop neighbors, 
indicating that they should be its children. The 
invitation message includes the IDS of all nodes 
that a father node wants to invite to join the ag- 
gregation tree as its children. It should also in- 
clude the hop count value to make a node aware 
of its minimal hop count to the sink node. The 
hop count value in the invitation message from 
the sink node is set to zero. A node sets its initial 
hop count value to infinity and updates its hop 
count value as one plus the minimal hop count 
value in all received invitation messages. 

2. Step 2: Once a node receives an invitation mes- 
sage, if this node has not joined the aggregation 
tree and the invitation message includes this node 
as a child node, then this node joins the aggrega- 
tion tree and records the sender of the invitation 
message as its father node. It locally broadcasts 
a join message to notify its neighbors about this 
decision. This invitation message is also called 
activating invitation message since it enforces the 
node to join the aggregation tree. Once a node 
joins the tree, later received invitation messages 
will be recorded for future use if the hop count 
value in the invitation messages is smaller than 
the node's current hop connt value. More specif- 
ically, these invitation messages will be used to 
select a candidate aggregation node if a current 
working aggregation node is compromised, as de- 
scribed in detail in Section 4.3. To avoid forming 
a poor aggregation tree, an additional rule should 
be applied, although this rule is rarely used if the 
network density is high: if a node receives an invi- 
tation message but the hop count value included 
in the message is 2 hops larger than its current 
hop count value, then this invitation message is 
ignored. We call this rule the optimization rule 
since it excludes the possibility of creating a poor 
aggregation tree that requires large energy con- 
sumption on data delivery. 

3. Step 3: After a node joins the aggregation tree, 
by checking its one-hop and tw-hop neighbors, 
excluding those indicated in the activating invi- 
tation message, it finds all the cliques that it be- 
longs to. If such cliques cannot be found, then 
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this node works as a leaf node. Otherwise, it se- 
lects the maximal clique and locally broadcasts 
an invitation message with the hop count value 
increased by one, indicating that all other nodes 
in the selected clique should be its children. 

4. Step 4: Repeat step 2 and step 3 until all non- 
isolated nodes have joined the tree. 

Due to the topological constraint that an aggre- 
gation node together with its children should form a 
clique, it is possible that some nodes may not join 
the aggregation tree even if they have paths to the 
sink node. We call such nodes sparse nodes since they 
have only sparse set of neighboring nodes. Neverthe- 
less, as demonstrated later, the ratio of the number of 
sparse nodes over the total number of sensor nodes is 
eztremely small if the network density is reasonably 
high. As such, we could simply require the sparse 
nodes to send their messages to the sink node with- 
out performing any in-network processing. Any secure 
routing and secure unicast mechanisms could be ap- 
plied to the messages sent from the sparse nodes. 

At the end of the SAT buildup process, each node 
should record the following information: 

1. the IDS of its onehop and t m h o p  neighboring 
nodes, 

2. the ID of its father node in the aggregation tree, 

3. the IDS of its sibling nodes in the aggregation tree, 

4 Cheating Detection for Data Aggre- 
gation 

4.1 Detection of Potential Misbehavior 
Due to the topological constraints in SAT, each 

node can hear all messages sent to its father node and 
can monitor the message sent from its father node to 
its grandfather node to check if the father node per- 
forms data aggregation correctly. If a node's father 
node sends out a value that is signifimntly different 
from a correct aggregation d u e ,  the node will raise 
an alert. The criterion of setting a proper thresh- 
old value for raising an alert will be discussed in Sec- 
tion 5. In this paper, we differentiate an alert message 
from a detection-confinmation messaee. An alert mes- - 
sage means a potential compromise, while a detection- 
c o n h a t i o n  message indicates the final confirmation 
of the existence of a cheating node. 

To draw a consistent conclusion about an aggre- 
gation node's behavior, we assign each alert with a 
confidence value. This confidence value is calculated 
based on the specific aggregation function and is used 

to indicate the likelihood that the aggregation node is 
cheating. In the next section, we propose a weighted 
voting method to make the final decision regarding 
whether or not an aggregation node is cheating. 

4.2 Weighted Voting 
First of all, we want to remark that all control mes- 

sages in the weighted voting process and the local re- 
covery process should be encrypted and authenticated 
with some underlying secure communication mecha- 
nisms. This is to guarantee the correct final decision 
once potential misbehavior is detected. Also, we stress 
again that the secure communicntion is required only 
when an aggregation node is working improperly. 

Once a sensor node detects that its father node 
might be cheating, it sends out an alert message to all 
its neighbors except the father node. To keep a com- 
promised node from sending out fake alert messages 
and also to keep the voting process invisible to the fa- 
ther node, the alert message should be encrypted and 
authenticated. Note that the voting process should he 
secure to avoid potential fake control messages. 

An alert message should include the following in- 
formation: 

1. The cheating node's ID, 

2. The detecting node's ID, 

3. The confidence value of the alert. 

The confidence value indicates the likelihood of a 
correct detection. A large confidence value indicates 
that the aggregation node is more likely to be cheating. 

Once receiving alert messages from neighboring 
nodes, a node first checks if the cheating node is its fa- 
ther node. If yes, it calculates the weighted confidence 
value using the following formula: 

where f; is the confidence value included in the alert 
message from the sibling node i, m is the total number 
of sibling nodes, and ml is the number of sibling nodes 
that send out an alert message. 

If the weighted confidence value F is larger than a 
predefined threshold value, the father node is assumed 
to be cheating, and a detection-eonfinnation message 
will be broadcast within a given hop limit. Any node 
receiving the detection-confinnation message will use 
the following local recovery mechanism to avoid using 
the compromised node. 
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4.3 Local Recovery 
If a sensor node, A, receives a detection- 

conjirmation message, it checks if the cheating node is 
one of its child nodes or its father. If the cheating node 
is one of its child nodes, A will ignore any messages 
from that child. 

If the cheating node is its father node, A will se- 
lect another candidate father from its recorded invita- 
tion messages. Note that deadlocks cannot be formed 
since a node only records invitation messages that 
have smaller hop count values than its current hop 
count value. In other words, sensor node A selects an- 
other neighboring sensor node, B, as its father node 
only if R has a smaller hop count value to the sink 
node than A. This is to avoid the deadlock situation 
where two sibling nodes select each other as the po- 
tential father node. If a candidate father node cannot 
be found, then the current node becomes an isolated 
sensor node since none of its fathers can be used for 
reliable aggregation. 

The newly formed "isolated" sensor nodes actually 
have a physical path to the sink node, although the 
path has to include some misbehaving nodes and may 
not be secure. If the sensor network still requires the 
sensing data from these 'Lisolated" sensor nodes, more 
secure mechanisms such as data signature and authen- 
tication must be utilized for each message from the 
newly formed "isolated" nodes. 

5 The Criterion of Raising alerts 
5.1 Problem Modeling 

There are mainly two reasons that the aggregated 
value at a father node is different from that calculated 
a t  a child node. The first is that some packets sent to 
the father node may be lost, and the other is that the 
father node uses a slightly different set of values for 
aggregation due to time asynchrony. In our model, 
a father node knows the number of its child nodes. 
When an aggregation calculation is required, the fa- 
ther node will use the most recently received values 
from its child nodes as the input. 

For instance, as shown in Figure 1, the child nodes, 
Cl, Cz, . . . , Cm, send data packets to the father node, 
F. Assume that during a time period each child 
node Ci(i = 1,. . . , na) sends n packets to the father 
node, denoted as D(C;, l),D(Ci, Z), . . . , D(Ci,n) 
respectively. Due to packet losses or time asynchrony, 
the value of the aggregation function calculated 
by the father node might be any value in the set 
{ f (D(c~ , j l ) ,  D(cz,jz),WC3,j3),. . . ,D(cm!jm))) 
where f is the aggregation function and 
j h ,  k = 1,2,. . . , m might be any value in {1,2,. . . , n). 

Figure 1: An illustration of the data aggregation 
model 

For a child node, when it monitors its father's be- 
havior, it calculates the same aggregation function 

where D(Ci, jk)(i = 1,. . . , m) is the newest data re- 
ceived from the sibling node i. As a reasonable as- 
sumption, we assume that lD(Ci,jk) - D(Ci,jk)l is 
bounded by 6, since it is unlikely that during a short 
time period readings from the same sensor change dra- 
matically. We assume that data from different child 
nodes are independent. 

Our problem could then he modeled as follows. 
Given an aggregation function f ,  an arbitrary pos- 
itive value A, a set of values Dl, Dz,. . . , Dm, and -- 
another set of values Dl, D2, . . . ,% with each - 
Di randomly selected from [Di - 6,D; + 6](i = 
1,2,. . . , m) respectively, what is the probability that -- - 
lf(D~,Dz, . . . , D  m)- f(D~,D~t...vDrn)l 2 A)? We 
denote the above probability as PC. 

The value of X indicates the absolute difference he- 
tween the aggregated value calculated at a father node 
and that monitored at a child node. Given a small 
threshold value 0, if PC 5 0, then the child node should 
raise an alert since it is unlikely (i.e., PC is too small) 
that the father node should generate such a different 
aggregated value. The confidence value for the alert 
is set to 1 - PC. 

5.2 Mean 
Denote the mean of Dl, D2,. . . ,Dm as S = 

c: D* -- - 
. Also denote the mean of Dl, Dz,. . . ,Dm 

1: E 
as 3 = e, where is randomly selected from 
[D; 5, D, + 61 respectively. Note that S is a constant 
and S is a random variable. We are asked to estimate 
PC = PT(IS- SI 2 A). Ry calculation, we get 
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= O  i f A > S + d o r A < S - 6  
P C  { 5 & otherwise 

5.3 Min 
Denote the min of Dl ,  D2,. . . , Dm as m = 

m n { D 1  2 , .  . D m  Also denote the min of -- - -- - 
Dl ,  Dz, . . . , D m  as fii = min{Dl, Dz, . . . ,Dm} ,  where - 
D; is randomly selected from [D; - 6, D+ + 61 respec- 
tively. Note that m is a constant and 7E is a random 
variable. We are asked to estimate PC = Pr(lK-ml 2 
A). By calculation, we get 

5.4 Max 
Denote the maz of Dl,  Da,. .. , Dm as M = 

max{Dl,D2,.  . . ,D,,,)I_ Also denote the maz of -- -- 
D I , D ~ , . . . , Z  as M = m { D l , D 2  ,..., Z } ,  
where is randomly selected from [Il)i - 6. D; +61 re- . -  . - . 
spectively. Note that M is a constant and M is a ran- 
dom variable. The calculation of PC = P r ( l z -  MI > 
A) is the same as that when the aggregation function 
is min in the previous section. To save space, we omit 
its result. 

6 Simulation Study 
6.1 Simulation Model 

In this section, we perform simulation study to fur- 
ther demonstrate the feasibility and the effectiveness 
of SAT. We want to illustrate that SAT does not intro- 
duce extra transmission cost compared to other com- 
monly used tree structures and the proportion of the 
sparse nodes in SAT is extremely small for dense net- 
works. In addition, we want to justify that the wst 
for local recovery is practically acceptable. 

For comparison purposes, we implemented SAT and 
other types of tree structures, namely, RFT (Rreadth- 
First Tree) and BFT-D (Breadth-First Tree with the 
Distance constraint). In RFT-D, we list node A as 
node R's child during the breadth-first search only 
when node A is further away from the sink than node 
B. The simulation was run on a variety of scenar- 
ios. The sensor nodes were deployed randomly in a 
1000 meters by 1000 meters area with nodes having 
a transmission range of 50 meters. We changed the 
number of sensor nodes from 500 to 5000 to change 
network density and placed the sink node in four dif- 
ferent locations, i.e., the up-left corner (0,0), the top- 
middle (500, O), the left-middle (0,500), and the center 
(500,500). We ran each scenario with 3 different ran- 
dom seeds. The simulation results were obtained by 
calculating the average of all mns. 

SAT t 
,? 6 
C 

EFT a 
BFT+D * .  - 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Number 01 Nodes 

Figure 2: Comparison of Different n e e  Structures 

6.2 Simulation Results 
6.2.1 The average depth of leaf nodes 

Figure 2 shows results of the average depth of the leaf 
nodes with different tree structures. From the results, 
the three tree structures, SAT, BFT, and BFT-D, have 
very close performance. The average depth of leaf 
nodes indicates the average height of the aggregation 
tree and thus the approximate cost on message de- 
livery with the aggregation tree. Figure 2 illustrates 
that SAT, despite its advantage for aggregation moni- 
toring, does not incur obvious extra overhead on mes- 
sage delivery compared to other types of trees. 

6.2.2 The ratio of sparse nodes 

Figure 3 shows the ratio of the number of sparse nodes 
over the total number of nodes. Fkom the figure, we 
can see that when the network is sparse, e.g., when the 
number of nodes is smaller than 1000, the number of 
sparse nodes is not negligible. Nevertheless, when net- 
work density becomes higher, the performance of SAT 
becomes significantly better with the ratio of sparse 
nodes quickly dropping to almost zero. This phe- 
nomenon justifies our previous claim that with dense 
networks, the cost on message delivery from the sparse 
nodes is negligible. 

6.2.3 The number of local candidate paths 

Table 1 shows the number of candidate paths from a 
node to its grandfather node without using its cur- 
rent father node on the SAT. Such candidate paths 
could be used for local recovery once an aggregation 
node is detected to behave abnormally. We can see 
that with a looser constraint on the hop count from a 
node to its grandparent, more candidate paths wuld 
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Figure 3: The Ratio of sparse nodes 

Table 1: Number of Candidate Paths I Nodes 11 1 Hop 1 2 Hops 1 3 Hops 1 4 Hops I 

be found and thus the chance of successful local recov- 
ery is higher. But a candidate path with larger hop 
count requires more message transmissions. There is 
a tradeoff between the pmibility of local recovery and 
the recovery cost. We observe that with a hop count 
constraint of 3, more than 15 local candidate paths 
could be found in most cases. 

7 Conclusion 
Traditional solutions to secure data aggregation use 

persistent data authentication that incurs heavy com- 
putational overheads even if no attackers or misbe- 
having nodes exist in the network. Such computa- 
tional overheads waste energy and may greatly reduce 
the available CPU resource for data processing. An 
ideal security solution should not perform any crypto- 
graphic operations when the network works correctly, 
and uses data authentication only when misbehaving 
nodes are detected. For this purpose, we propose a Se- 
cure Aggregation Tree (SAT) with which it is very easy 
to observe the behavior of aggregation nodes with- 
out resorting to persistent data authentication. With 
analysis and simulation, we demonstrate the feasibility 
and effectiveness of using SAT to monitor the aggre- 
gation operations. 
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