
Secure Data Aggregation without Persistent Cryptographic
Operations in Wireless Sensor Networks

Kui Wu: Dennis Dreef Bo Sun Yang Xiao
Computer Science Dept. Computer Science Dept. Computer Science Dept.

University of Victoria Lamar University University of Memphis
BC, Canada V8W 3P6 Beaumont, TX 77710, USA Memphis, TN 38152, USA
{wkui,ddreef)@uvic.ca bsun@cs.lamar.edu yangxiao@ieee.org

Abstract
In-network data aggregation is an essential opera-

tion to reduce energy consumption in large-scale wire-
less sensor network8. With data aggregation, however,
raw data i t em are invisible to the base station and
thus the authenticity of the aggregated data i s h a d to
guarantee. A compromised sensor node may forge an
aggregation value and mislead the base station into
trusting a false reading. Due to the stringent con-
straints of energy supply and computing capability on
sensor nodes, it is challenging to detect a compromised
sensor node and keep it from cheating. This paper pro-
poses a Secure Aggregation Tree (SAT) to detect and
prevent cheating. Our method is essentially diffeerent
from other ezisting solutions in that it does not require
any cryptographic opemtions when all sensor nodes
work honestly. The detection of cheating is based on
the topological constraints in the aggregation tree.

1 Introduction
Extremely small sensors have been used broadly

for various applications such as habitat monitoring,
battlefield surveillance, and forest fire monitoring. A
large number of tiny sensors collect measurement data
and rely on multihop short-range radio communic*
tion to send data to the processing center, which is
also called the base station or the sink node. The
lifetime of sensors depends on effective energy saving
strategies such as sensor scheduling and in-network in-
formation processing to reduce the data traffic to the
base station. One important type of in-network pro-
cessing is data aggregation.

While data aggregation can effectively reduce the
amount of data transmitted to the base station, raw
data items may he invisible to the hase station and

.This =search was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
and Canada Foundation for Innovation (CFI).

thus their authenticity and integrity are hard to guar-
antee. As such, data aggregation is potentially vulner-
able to attackers who may inject bogus information or
forge aggegated values without being detected. For
instance, if a sensor close to the base station is com-
promised, it may claim a fake aggregation value to the
base station and mislead the hase station into trusting
the fake information. It may have a disastrous impact
if end users respond according to the faulty infonna-
tion.

Some methods have been proposed to solve the
above problem [2, 3, 7, 9, 101. Existing meth-
ods depend on complex data authentication opera-
tions [2, 3, 101 or the statistical features of specific
aggregation operations such as the mean, max, and
min [I, 8, 91. To guarantee correctness, persistent
authentication operations are used in most existing
methods. Persistent authentication, though very safe,
may consume too much energy and is thus undesir-
able for sensor networks. Resides the energy concern,
another barrier of using complex cryptographic oper*
tions is that the calculation capability of sensor nodes
is very limited. For this reason, cryptographic oper-
ations may significantly increase the data processing
delay and renders the network performance intolera-
ble.

In this paper, we assume the existence of a secure
mechanism but use it only when necessary, i.e., only
when cheating activities are detected. This strategy is
fundamentally different from existing solutions in that
its security is based on cheating detection instead of
persistent data authentication. This strategy can re-
duce energy consumption and more importantly can
save the CPU resource. It, however, requires the sup-
port of a lightweight and scalable cheating detection
method, which is a quite challenging task.

This paper is motivated to solve this problem.
First, it introduces some topological constraints when

1-4244-0198-4/06/$20.00 ©2006 IEEE 635

building a Secure Aggregation n e e (SAT), which facil-
itates the monitoring of the behavior of each aggrega-
tion sensor node. Second, when the aggregated values
from an aggregation node are in doubt, a weighted
voting scheme is proposed to decide finally whether
the aggregation node is properly behaving or is cheat-
ing. Third, if a misbehaving node is detected, a lo-
cal recovery scheme is presented to re-build SAT so
that the misbehaving node is excluded from the ag-
gregation tree. Since no cryptographic operations are
required when all nodes work honestly, our method
is lightweight. Since no centralired operations are
needed at the base station, our method also scales
very well.

2 Assumptions
We assume that a node cannot impersonate its

neighbors. This is not a strong assumption since if
a node, A, is in the promiscuous listening mode, it
can quickly detect any transmission from its neigh-
boring nodes with A's IP address. This assumption
is to exclude the pwibility that a node impersonates
its father node in the aggregation tree to send false
aggregated data such that an honest father is voted
out of the network.

We assume that two neighboring sensor nodes have
mechanisms for secure communication so that they
can decrypt and authenticate each other's messages.
There are a lot of key distribution methods pro-
posed for sensor networks tbat can meet this require-
ment [4, 5, 61. This seemly strong assumption does
not mean that our method will always use message
encryption and authentication. In contrast, they are
used only when cheating behavior is detected. If all
sensor nodes work honestly, no cryptographic opera-
tions are required.

In this paper, we focus only on the integrity and
authenticity of data.

3 Building a Secure Aggregation Tree
3.1 The structure of SAT

If we could build an aggregation tree such tbat any
child node can monitor the behavior of its father node,
then the cheating activities of any non-leaf (aggrega-
tion) nodes can be detected. In this paper we do not
consider the cheating behavior of leaf nodes since it is
indistinguishable between cheating and malfnnction-
ing for a leaf node. Obviously, to allow a child node
to monitor its father node's behavior, it is required
that the child node should be able to know all the
messages from its sibling nodes to the father node. In
other words, a father node together with its children
nodes should form a clique.

3.2 A Distributed Algorithm to build
SAT

We propose a distributed algorithm, which builds
the aggregation tree starting from the sink node and
includes four steps as follows.

1. Step 1: The sink node locally broadcasts an in-
vitation message to all of its one-hop neighbors,
indicating that they should be its children. The
invitation message includes the IDS of all nodes
that a father node wants to invite to join the ag-
gregation tree as its children. It should also in-
clude the hop count value to make a node aware
of its minimal hop count to the sink node. The
hop count value in the invitation message from
the sink node is set to zero. A node sets its initial
hop count value to infinity and updates its hop
count value as one plus the minimal hop count
value in all received invitation messages.

2. Step 2: Once a node receives an invitation mes-
sage, if this node has not joined the aggregation
tree and the invitation message includes this node
as a child node, then this node joins the aggrega-
tion tree and records the sender of the invitation
message as its father node. It locally broadcasts
a join message to notify its neighbors about this
decision. This invitation message is also called
activating invitation message since it enforces the
node to join the aggregation tree. Once a node
joins the tree, later received invitation messages
will be recorded for future use if the hop count
value in the invitation messages is smaller than
the node's current hop connt value. More specif-
ically, these invitation messages will be used to
select a candidate aggregation node if a current
working aggregation node is compromised, as de-
scribed in detail in Section 4.3. To avoid forming
a poor aggregation tree, an additional rule should
be applied, although this rule is rarely used if the
network density is high: if a node receives an invi-
tation message but the hop count value included
in the message is 2 hops larger than its current
hop count value, then this invitation message is
ignored. We call this rule the optimization rule
since it excludes the possibility of creating a poor
aggregation tree that requires large energy con-
sumption on data delivery.

3. Step 3: After a node joins the aggregation tree,
by checking its one-hop and tw-hop neighbors,
excluding those indicated in the activating invi-
tation message, it finds all the cliques that it be-
longs to. If such cliques cannot be found, then

636

this node works as a leaf node. Otherwise, it se-
lects the maximal clique and locally broadcasts
an invitation message with the hop count value
increased by one, indicating that all other nodes
in the selected clique should be its children.

4. Step 4: Repeat step 2 and step 3 until all non-
isolated nodes have joined the tree.

Due to the topological constraint that an aggre-
gation node together with its children should form a
clique, it is possible that some nodes may not join
the aggregation tree even if they have paths to the
sink node. We call such nodes sparse nodes since they
have only sparse set of neighboring nodes. Neverthe-
less, as demonstrated later, the ratio of the number of
sparse nodes over the total number of sensor nodes is
eztremely small if the network density is reasonably
high. As such, we could simply require the sparse
nodes to send their messages to the sink node with-
out performing any in-network processing. Any secure
routing and secure unicast mechanisms could be ap-
plied to the messages sent from the sparse nodes.

At the end of the SAT buildup process, each node
should record the following information:

1. the IDS of its onehop and t m h o p neighboring
nodes,

2. the ID of its father node in the aggregation tree,

3. the IDS of its sibling nodes in the aggregation tree,

4 Cheating Detection for Data Aggre-
gation

4.1 Detection of Potential Misbehavior
Due to the topological constraints in SAT, each

node can hear all messages sent to its father node and
can monitor the message sent from its father node to
its grandfather node to check if the father node per-
forms data aggregation correctly. If a node's father
node sends out a value that is signifimntly different
from a correct aggregation d u e , the node will raise
an alert. The criterion of setting a proper thresh-
old value for raising an alert will be discussed in Sec-
tion 5. In this paper, we differentiate an alert message
from a detection-confinmation messaee. An alert mes- -
sage means a potential compromise, while a detection-
c o n h a t i o n message indicates the final confirmation
of the existence of a cheating node.

To draw a consistent conclusion about an aggre-
gation node's behavior, we assign each alert with a
confidence value. This confidence value is calculated
based on the specific aggregation function and is used

to indicate the likelihood that the aggregation node is
cheating. In the next section, we propose a weighted
voting method to make the final decision regarding
whether or not an aggregation node is cheating.

4.2 Weighted Voting
First of all, we want to remark that all control mes-

sages in the weighted voting process and the local re-
covery process should be encrypted and authenticated
with some underlying secure communication mecha-
nisms. This is to guarantee the correct final decision
once potential misbehavior is detected. Also, we stress
again that the secure communicntion is required only
when an aggregation node is working improperly.

Once a sensor node detects that its father node
might be cheating, it sends out an alert message to all
its neighbors except the father node. To keep a com-
promised node from sending out fake alert messages
and also to keep the voting process invisible to the fa-
ther node, the alert message should be encrypted and
authenticated. Note that the voting process should he
secure to avoid potential fake control messages.

An alert message should include the following in-
formation:

1. The cheating node's ID,

2. The detecting node's ID,

3. The confidence value of the alert.

The confidence value indicates the likelihood of a
correct detection. A large confidence value indicates
that the aggregation node is more likely to be cheating.

Once receiving alert messages from neighboring
nodes, a node first checks if the cheating node is its fa-
ther node. If yes, it calculates the weighted confidence
value using the following formula:

where f; is the confidence value included in the alert
message from the sibling node i, m is the total number
of sibling nodes, and ml is the number of sibling nodes
that send out an alert message.

If the weighted confidence value F is larger than a
predefined threshold value, the father node is assumed
to be cheating, and a detection-eonfinnation message
will be broadcast within a given hop limit. Any node
receiving the detection-confinnation message will use
the following local recovery mechanism to avoid using
the compromised node.

637

4.3 Local Recovery
If a sensor node, A, receives a detection-

conjirmation message, it checks if the cheating node is
one of its child nodes or its father. If the cheating node
is one of its child nodes, A will ignore any messages
from that child.

If the cheating node is its father node, A will se-
lect another candidate father from its recorded invita-
tion messages. Note that deadlocks cannot be formed
since a node only records invitation messages that
have smaller hop count values than its current hop
count value. In other words, sensor node A selects an-
other neighboring sensor node, B, as its father node
only if R has a smaller hop count value to the sink
node than A. This is to avoid the deadlock situation
where two sibling nodes select each other as the po-
tential father node. If a candidate father node cannot
be found, then the current node becomes an isolated
sensor node since none of its fathers can be used for
reliable aggregation.

The newly formed "isolated" sensor nodes actually
have a physical path to the sink node, although the
path has to include some misbehaving nodes and may
not be secure. If the sensor network still requires the
sensing data from these 'Lisolated" sensor nodes, more
secure mechanisms such as data signature and authen-
tication must be utilized for each message from the
newly formed "isolated" nodes.

5 The Criterion of Raising alerts
5.1 Problem Modeling

There are mainly two reasons that the aggregated
value at a father node is different from that calculated
a t a child node. The first is that some packets sent to
the father node may be lost, and the other is that the
father node uses a slightly different set of values for
aggregation due to time asynchrony. In our model,
a father node knows the number of its child nodes.
When an aggregation calculation is required, the fa-
ther node will use the most recently received values
from its child nodes as the input.

For instance, as shown in Figure 1, the child nodes,
Cl, Cz, . . . , Cm, send data packets to the father node,
F. Assume that during a time period each child
node Ci(i = 1,. . . , na) sends n packets to the father
node, denoted as D(C;, l),D(Ci, Z), . . . , D(Ci,n)
respectively. Due to packet losses or time asynchrony,
the value of the aggregation function calculated
by the father node might be any value in the set
{ f (D(c~ , j l) , D(cz,jz),WC3,j3),. . . ,D(cm!jm)))
where f is the aggregation function and
j h , k = 1,2,. . . , m might be any value in {1,2,. . . , n).

Figure 1: An illustration of the data aggregation
model

For a child node, when it monitors its father's be-
havior, it calculates the same aggregation function

where D(Ci, jk)(i = 1,. . . , m) is the newest data re-
ceived from the sibling node i. As a reasonable as-
sumption, we assume that lD(Ci,jk) - D(Ci,jk)l is
bounded by 6, since it is unlikely that during a short
time period readings from the same sensor change dra-
matically. We assume that data from different child
nodes are independent.

Our problem could then he modeled as follows.
Given an aggregation function f , an arbitrary pos-
itive value A, a set of values Dl, Dz,. . . , Dm, and --
another set of values Dl, D2, . . . ,% with each -
Di randomly selected from [Di - 6,D; + 6](i =
1,2,. . . , m) respectively, what is the probability that -- -
lf(D~,Dz, . . . , D m)- f(D~,D~t...vDrn)l 2 A)? We
denote the above probability as PC.

The value of X indicates the absolute difference he-
tween the aggregated value calculated at a father node
and that monitored at a child node. Given a small
threshold value 0, if PC 5 0, then the child node should
raise an alert since it is unlikely (i.e., PC is too small)
that the father node should generate such a different
aggregated value. The confidence value for the alert
is set to 1 - PC.

5.2 Mean
Denote the mean of Dl, D2,. . . ,Dm as S =

c: D* -- -
. Also denote the mean of Dl, Dz,. . . ,Dm

1: E
as 3 = e, where is randomly selected from
[D; 5, D, + 61 respectively. Note that S is a constant
and S is a random variable. We are asked to estimate
PC = PT(IS- SI 2 A). Ry calculation, we get

638

= O i f A > S + d o r A < S - 6
P C { 5 & otherwise

5.3 Min
Denote the min of Dl , D2,. . . , Dm as m =

m n { D 1 2 , . . D m Also denote the min of -- - -- -
Dl , Dz, . . . , D m as fii = min{Dl, Dz, . . . ,Dm} , where -
D; is randomly selected from [D; - 6, D+ + 61 respec-
tively. Note that m is a constant and 7E is a random
variable. We are asked to estimate PC = Pr(lK-ml 2
A). By calculation, we get

5.4 Max
Denote the maz of Dl, Da,. .. , Dm as M =

max{Dl,D2,. . . ,D,,,)I_ Also denote the maz of -- --
D I , D ~ , . . . , Z as M = m { D l , D 2 ,..., Z } ,
where is randomly selected from [Il)i - 6. D; +61 re- . - . - .
spectively. Note that M is a constant and M is a ran-
dom variable. The calculation of PC = P r (l z - MI >
A) is the same as that when the aggregation function
is min in the previous section. To save space, we omit
its result.

6 Simulation Study
6.1 Simulation Model

In this section, we perform simulation study to fur-
ther demonstrate the feasibility and the effectiveness
of SAT. We want to illustrate that SAT does not intro-
duce extra transmission cost compared to other com-
monly used tree structures and the proportion of the
sparse nodes in SAT is extremely small for dense net-
works. In addition, we want to justify that the wst
for local recovery is practically acceptable.

For comparison purposes, we implemented SAT and
other types of tree structures, namely, RFT (Rreadth-
First Tree) and BFT-D (Breadth-First Tree with the
Distance constraint). In RFT-D, we list node A as
node R's child during the breadth-first search only
when node A is further away from the sink than node
B. The simulation was run on a variety of scenar-
ios. The sensor nodes were deployed randomly in a
1000 meters by 1000 meters area with nodes having
a transmission range of 50 meters. We changed the
number of sensor nodes from 500 to 5000 to change
network density and placed the sink node in four dif-
ferent locations, i.e., the up-left corner (0,0), the top-
middle (500, O), the left-middle (0,500), and the center
(500,500). We ran each scenario with 3 different ran-
dom seeds. The simulation results were obtained by
calculating the average of all mns.

SAT t
,? 6
C

EFT a
BFT+D * . -

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number 01 Nodes

Figure 2: Comparison of Different n e e Structures

6.2 Simulation Results
6.2.1 The average depth of leaf nodes

Figure 2 shows results of the average depth of the leaf
nodes with different tree structures. From the results,
the three tree structures, SAT, BFT, and BFT-D, have
very close performance. The average depth of leaf
nodes indicates the average height of the aggregation
tree and thus the approximate cost on message de-
livery with the aggregation tree. Figure 2 illustrates
that SAT, despite its advantage for aggregation moni-
toring, does not incur obvious extra overhead on mes-
sage delivery compared to other types of trees.

6.2.2 The ratio of sparse nodes

Figure 3 shows the ratio of the number of sparse nodes
over the total number of nodes. Fkom the figure, we
can see that when the network is sparse, e.g., when the
number of nodes is smaller than 1000, the number of
sparse nodes is not negligible. Nevertheless, when net-
work density becomes higher, the performance of SAT
becomes significantly better with the ratio of sparse
nodes quickly dropping to almost zero. This phe-
nomenon justifies our previous claim that with dense
networks, the cost on message delivery from the sparse
nodes is negligible.

6.2.3 The number of local candidate paths

Table 1 shows the number of candidate paths from a
node to its grandfather node without using its cur-
rent father node on the SAT. Such candidate paths
could be used for local recovery once an aggregation
node is detected to behave abnormally. We can see
that with a looser constraint on the hop count from a
node to its grandparent, more candidate paths wuld

639

0 4

0.3

0.2

0 1

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

Figure 3: The Ratio of sparse nodes

Table 1: Number of Candidate Paths I Nodes 11 1 Hop 1 2 Hops 1 3 Hops 1 4 Hops I

be found and thus the chance of successful local recov-
ery is higher. But a candidate path with larger hop
count requires more message transmissions. There is
a tradeoff between the pmibility of local recovery and
the recovery cost. We observe that with a hop count
constraint of 3, more than 15 local candidate paths
could be found in most cases.

7 Conclusion
Traditional solutions to secure data aggregation use

persistent data authentication that incurs heavy com-
putational overheads even if no attackers or misbe-
having nodes exist in the network. Such computa-
tional overheads waste energy and may greatly reduce
the available CPU resource for data processing. An
ideal security solution should not perform any crypto-
graphic operations when the network works correctly,
and uses data authentication only when misbehaving
nodes are detected. For this purpose, we propose a Se-
cure Aggregation Tree (SAT) with which it is very easy
to observe the behavior of aggregation nodes with-
out resorting to persistent data authentication. With
analysis and simulation, we demonstrate the feasibility
and effectiveness of using SAT to monitor the aggre-
gation operations.

References
[I] A. Roulis, S. Ganeriwal, and M. R. Srivastava,

"Aggregation in sensor networks: an energy - ac-
curacy tradeoff," Elsevier Ad-hoe Networks Journal
(special wsue on sensor network pmtoeols and appli-
cations), 2003.

[2] H. Cam, S. Ozdemir, P. Nair, and
D. Muthuavinashiappan, "Espda: Energy-
efficient and secure pattern-based data aggre-
gation for wireless sensor networks," in IEEE
Sensors 2003 Conference, Toronto, Canada,
October 22-24 2003.

[3] L. Hu and D. Evans, "Secure aggregation for wire-
less networks," 2003.

[4] C. Karlof, N. Sastry, and D. Wagner, "Tinysec: A
link layer security architecture for wireless sensor
networks," in Second ACM Conference on Embedded
Networked Sensor Systems (SensSys ZOOd), Novem-
ber 2004.

[5] A. Perrig, "The biba one-time signature and
broadcast authentication protocol," in Pmeed-
inga of the Eighth ACM Confemnce on Computer
and Communications Security (CCS-B), Philadel-
phia PA, USA, Nov. 2001, pp. 28-37.

[6] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
J. D. Tygar, "Spins: Security protocols for sensor
networks," Wireless Networks, vol. 8, no. 5, pp.
521-534, Sept. 2002.

[7] B. Przydatek, D. Song, and A. Perrig, "Sia: Se-
cure information aggregation in sensor networks,"
in ACM SenSys 2003, Nov 2003.

[8] N. Shrivastava, C. Buragohain, D. Agrawal, and
S. Suri, "Medians and beyond: new aggregation
techniques for sensor networks," in SenSys '04:
Pmceedings of the 2nd international conference on
Embedded networked sensor systems. New York,
NY, USA: ACM Press, 2004, pp. 239-249.

[9] D. Wagner, "Resilient aggregation in sensor net-
works," in ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN 'Od)), October 2004.

[lo] W. Zhang and G. Cao, "Group rekeying for fil-
tering false data in sensor networks: A predistri-
bution and local collaboration based approach,"
in IEEE INFOCOM, March 2005.

640

