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ABSTRACT

This paper studies security for data aggregation in sensor
networks. Current aggregation schemes were designed with-
out security in mind and there are easy attacks against them.
We examine several approaches for making these aggrega-
tion schemes more resilient against certain attacks, and we
propose a mathematical framework for formally evaluating
their security.
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1. INTRODUCTION

The goal of this paper is to examine secure data aggre-
gation in sensor networks. Sensor networks have been pro-
posed for scientific data collection, environmental monitor-
ing, building health monitoring, burglar and fire alarm sys-
tems, and many other applications involving distributed in-
teraction with the physical environment. Many of these ap-
plications involve a distributed system of sensors measur-
ing the environment from many vantage points and then
somehow aggregating the collected data to form a global
summary view that can be acted upon. Consequently, data
aggregation can be viewed as an important building block
in sensor networks. Unfortunately, even though security has
been identified as a major challenge for sensor networks [2,
11], current proposals for data aggregation protocols have
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not been designed with security in mind, and consequently
they are vulnerable to easy attacks. In this paper, we un-
dertake an in-depth study of security for data aggregation
in sensor networks.

First, we show that existing proposals for data aggrega-
tion are subject to attack (Sections 3 and 4). When a single
sensor node can be captured, compromised, or spoofed, an
attacker can often manipulate the result of the aggregation
operation without limit, gaining complete control over the
computed aggregate. This is undesirable. For instance, we
show that any protocol that computes the average, sum,
minimum, or maximum function is insecure against mali-
cious data, no matter how these functions are computed.

In response to this threat, we introduce a theoretical frame-
work for modeling the security of data aggregation. This
model insists that the aggregation function must be resilient
in the presence of arbitrary changes to a small subset of sen-
sor observations, and thus we coin the term resilient aggre-
gation to refer to schemes that satisfy this condition. We
formalize this condition precisely (Section 5) and charac-
terize which functions achieve the resilience condition (Sec-
tion 6). For instance, we show that the median is a more
robust alternative to the average. Many of our conclusions
are consistent with intuition; the value of our mathematical
framework is that one can place this intuition on a firm foun-
dation, and one can analyze systems that are too complex
for intuition to provide sufficient guidance.

Finally, we introduce several techniques and principles for
achieving resilient aggregation in new protocols (Section 7).
For instance, we show that outlier elimination (trimming)
is a powerful aggregation technique that provides inherent
robustness against attack.

This paper makes three scientific contributions:

e The paper describes attacks on standard schemes for
data aggregation and introduces the problem of secur-
ing aggregation in the presence of malicious or spoofed
data. The attacks are quite obvious, but the crisp
problem statement we give has not appeared in print
before.

e The paper proposes a mathematical theory of secu-
rity for aggregation. This theory lets us quantify, in
a principled way, the robustness of an aggregation op-
erator against malicious data. The paper draws novel
connections to statistical estimation theory and to the
field of robust statistics.

e The paper identifies techniques for aggregation that
provide robustness against attack. The techniques are
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Figure 1: An abstract sensor network architecture,
with inessential underlying physical structures ab-
stracted away. We have n sensor nodes (the small
circles), each with a separate secure channel to a
single trusted base station (the large solid square).
The ith sensor sends measurement z; to the base
station, and the base station uses the function f to
compute the aggregate y. In this picture, n = 9.

not novel, but the analysis of their performance in this
setting is new. This should provide helpful guidance to
sensor network implementors in selecting appropriate
aggregation operators.

2. BACKGROUND

The architecture. A sensor network is a distributed sys-
tem designed for interacting with the physical environment.
A sensor network might contain hundreds or thousands of
tiny, low-cost, low-power sensor nodes. Many architectures
also use more powerful base stations, which are in a one-
to-many association with sensor nodes. Often, one forms
a tree with a base station at the root and sensor nodes at
the leaves. An aggregation transaction begins by broadcast-
ing the query down the tree from the base station to the
leaves. Then, the sensor nodes measure their environment
and send their measurement back up the tree to the base
station. Finally, the base station performs an aggregation
computation to obtain the aggregate. Thus, sensor nodes
act as data sources, and the base station acts as a sink.

An abstract model. In this paper, we will abstract away
some inessential features. We consider only a single base
station and n associated sensor nodes. At some point, each
sensor node takes a measurement and reports the observed
value z; to the base station. The base station’s goal is to
compute an aggregate value y that summarizes the sensor
readings x1,...,%, using the aggregation function f; thus,
y = f(z1,...,2n). Our attacks and defenses ignore the in-
ner workings of the specific aggregation and communication
protocols used, such as how data is routed. Instead, we focus
only on the function f computed by the base station. Con-
sequently, we ignore the structure of the multi-hop network,
assuming only that each sensor node has a separate link to
the base station. We depict this abstracted architecture in
Figure 1.

Threat model. We will assume that each sensor node has
a secure channel back to the base station for reporting data
measurements. Moreover, we assume these secure channels
are independent: capture of one sensor node might compro-

mise the contents of that node’s channel to the base station,
but it will not reveal anything about other nodes’ channels.
For instance, each sensor might share a per-node symmet-
ric key with the base station and use this key to encrypt
its data. As a consequence of these assumptions, we do not
need to worry about spoofing or interception of data in tran-
sit. This leaves only the question of whether the endpoints
are trustworthy or not.

The main threat we will consider is that of malicious data.
One way that malicious data can be injected is through node
compromise or node capture attacks: if a sensor node is
captured, reverse-engineered, or otherwise comes under ad-
versarial control, we can no longer trust its measurements.
Alternatively, if an adversary is able to fool the sensor’s mea-
suring element—perhaps by subjecting it to unusual temper-
ature, lighting, or other spoofed environmental conditions,
for instance—then the sensor node’s measurement is com-
promised. Thus, measurements can often be compromised
even if nodes are protected by tamper-resistant packaging.

We will use a Byzantine fault model, where the adversary
can inject arbitrarily chosen malicious data readings at a
few sensors. Of course, compromised nodes may behave in
arbitrarily malicious ways, which means that measurements
from compromised nodes are under the complete control of
the adversary. We conservatively assume that all compro-
mised nodes collude, or are under the control of a single at-
tacker. An archetypical attack involves compromised nodes
reporting bogus measurements in an attempt to skew the
computed aggregate.

Compromise of sensor nodes is indeed a real threat in real
sensor networks. Because sensor nodes must be low-cost,
we often cannot afford to mount them in physical packaging
that provides a high level of tamper resistance. Because sen-
sor nodes must be deployed into the environment, we cannot
provide physical security or control access to them. And, be-
cause sensor nodes must be deployed in large numbers, the
adversary is afforded many opportunities to compromise a
sensor node.

Of course, the adversary’s capabilities are not unlimited.
Some cost or luck will be required for each node that the ad-
versary wishes to compromise. Therefore, we should assume
that the adversary can compromise only a limited number
of sensor nodes: perhaps one or two or three, but not half
of the network. We require that security degrade gracefully
as the number of compromised nodes grows. In this respect,
our main hope is for “safety in numbers”: if we can build a
network that is robust in the presence of a few malicious or
captured sensor nodes, we will be in great shape.

In this paper, our analysis will assume that base sta-
tions remain trustworthy and unassailable. This assumption
seems plausible: base stations are rarer and hence we can
spend more on them, so it may be feasible to enclose them
in high-quality tamper resistant enclosures or to place them
in physically secure, access-controlled locations.

Security goals. We focus on integrity. The adversary should
not be able to affect the result of the aggregation operation,
as computed at the base station. This should remain true
even in the presence of a few compromised sensor nodes.
Unfortunately, perfect integrity is rarely attainable. By
manipulating the readings at a few compromised sensor nodes,
the attacker can usually affect the computed aggregate, even
if only negligibly, no matter how clever the protocol. There-



fore, we relax our goal slightly and ask for approzimate
integrity: the adversary should have only a limited influ-
ence on the result of the aggregation computation. In other
words, if y denotes the result in the absence of an attacker
and y* the result after an attacker intervenes, then we wish
|y* —y| to be bounded, preferably by some small value. No-
tice that if |y* — y| is negligible compared to the random
noise in y, the attacker has gained little. Because measure-
ments of the physical world are inherently noisy, we expect
approximate integrity to form an adequate security goal for
most applications.

We separate the specification of desired aggregation func-
tionality from the protocol used to implement or achieve
this functionality. We assume the functionality is given as
a function f; given sensor readings zi,...,%,, we wish to
compute the aggregate y = f(z1,...,zn). A valid proto-
col might use any mechanism whatsoever to compute this
aggregate. See Figure 1 for an abstract view.

The central question for secure aggregation is as follows:

Question. Which aggregation functionalities can be
securely and meaningfully computed, in the presence
of a few compromised nodes?

The following sections are directed at answering this central
question.

Caveats. We do not consider confidentiality, availability, or
performance in this paper. We do not consider in-network
aggregation; in our model, trusted base stations are the only
aggregation points.

Connections to secure multi-party computation. The
central question for secure aggregation carries some connec-
tion to the area of secure multi-party computation. It is
known that any functionality that can be computed with the
help of a trusted third party can also be computed without
it, using generic multi-party computation. The connection
to sensor networks is natural: we may think of aggregation
in sensor networks as an instance of multi-party computa-
tion with a trusted third party, where the functionality is
given by the aggregation function f and where the base sta-
tion plays the role of the trusted third party.

The question of which aggregation functionalities f can be
meaningfully computed in sensor networks now corresponds
to the following question about multi-party computation:
Which functionalities f can be meaningfully computed by
a protocol for secure multi-party computation, when some
parties might behave maliciously by submitting bogus in-
puts? In the general case, this question does not seem to
have been considered in the literature on generic multi-party
computation. The literature has focused on demonstrating
that anything that can be computed with a trusted third
party can be computed without a trusted third party. How-
ever, whether or not we assume that we have a trusted third
party, there is no guarantee that what we want to compute
is meaningful in the presence of malicious participants. For
instance, if a group of cryptographers wishes to learn their
average salary without disclosing anything else, there is a
potential problem: whether or not we use a trusted third
party, a single malicious cryptographer can cause the com-
puted result to deviate tremendously from the correct result.

To put another way, the difference between this work and
previous research on generic multi-party computation is the

difference between specification and implementation. Prior
work has shown that any functionality you can specify, you
can implement; we focus on asking whether a specified func-
tionality is meaningful in its own right.

Applications to system robustness. Even in the absence
of an adversary, resilient aggregation functions may have
utility in improving robustness against random faults. A
single corrupted measurement should not cause large errors
in the computed aggregate. Standard aggregates, such as
the average, cannot achieve this goal (see Section 3); a single
malfunctioning sensor returning random results can skew
the average by an unbounded amount.

Of course, any aggregate that is resilient against malicious
attack will also be resilient against random failures. Con-
sequently, resilient aggregation may also be of independent
interest for its use in improving overall system reliability.

3. ATTACKSONEXISTING AGGREGATION
PRIMITIVES

An example. To give the flavor of the kind of attack possi-
ble on naive aggregation protocols, let us consider a whim-
sical example. Imagine a large building with a control net-
work that regulates inside temperatures by measuring the
temperature in each room, computing the building-wide av-
erage, and deciding whether to turn on the air conditioning
or not according to whether the average temperature ex-
ceeds some threshold.

Now imagine a building occupant who prefers climates
much cooler than the system is programmed to provide. It
is easy to see that she can manipulate the system, simply
by holding her cigarette lighter under a single sensor. Why
does this work? The key observation is that she has arti-
ficially increased this sensor’s temperature reading by hun-
dreds of degrees, which will often have the effect of raising
the building-wide average temperature above the threshold,
because huge changes to a single sensor reading can cause
noticeable changes to the average. This maliciously-skewed
average can thereby trigger the air conditioning unit into
turning on when it otherwise would not have.

We see that a single attacker has succeeded in hijacking
control of the building’s climate merely by fooling a single
sensor. This means that our hypothetical climate control
network is fragile against malicious attack. Even though in
this example the operation of the air conditioning unit is
probably not particularly security-critical, this illustrates a
general problem that can have more serious consequences in
some real systems. This is a failure mode that we would
prefer to avoid.

Some functionalities are inherently insecure. Earlier, we
suggested separating the choice of aggregation functionality
(specified by the function f) from the way our protocol com-
putes this aggregate. For instance, in the building-control
example above, we had f(z1,...,2n) = (x1+ -+ + zn)/n.
Notice that our example attack did not depend in any way
on how we compute this function. In other words, it is the
specification itself that was fundamentally faulty, not the
implementation.

This is a point of such general applicability that it bears
repeating. Some functions simply cannot be computed se-



curely in the presence of compromised nodes, no matter
what protocol we use. Because a single node can exert total
control over the building-wide average temperature, the av-
erage temperature is not a meaningful quantity when nodes
are compromised.

In the remainder of this section, we will present attacks
on several popular aggregation functions. These attacks are
straightforward and obvious upon inspection, once one rec-
ognizes the importance of resilience; however, we have not
seen these attacks described before in the sensor network
literature.

The average is insecure. We saw earlier that the aver-
age, given by f(z1,...,%n) = (z1 + -+ + z,)/n, is in-
secure in the presence of a single malicious sensor node.
Say that sensor node 1 is compromised. Then by substi-
tuting the fake reading x] in place of the real measure-
ment x1, the average is changed from y = f(z1,...,2n)
to y* = f(zi,22,...,n) = y+ (¢] —x1)/n. Since the at-
tacker can choose x] freely, the attacker can exert complete
control over the result. For instance, if the attacker wants
to artificially add a bias d to the average, then he can set
] = x1 + dn, and the average will be successfully altered
from y to y* = y + d. Consequently, the average is not a
meaningful aggregate in the presence of even a single com-
promised node.

The sum is insecure. Similarly, the sum f(z1,...,2,) =
1 + --- + z, is not meaningful in the presence of one or
more compromised nodes. The attacker can freely increase
or decrease this value without limit.

The count can be secured. A related primitive is the
count, which is like the sum, except that each node con-
tributes 0 or 1 to the total. If an incautious implementation
forgets to check that each node’s value is in the set {0, 1},
then it will be susceptible to the same attack as the sum.
However, if properly implemented, we know of no serious
attacks on the count. An attacker with control over k£ com-
promised nodes can only change the count by at most &k, and
hence if the number of compromised nodes is limited, this
may be acceptable.

The minimum is insecure. Consider computing the mini-
mum of the sensor readings, f(z1,...,Tn) = min(z1,...,Ts),
and suppose that sensor 1 is compromised. The attacker
can only increase the minimum if z; is the unique small-
est sensor reading, and even then, the minimum is raised to
min(z], z2,...,2Zn), which cannot exceed min(zs,...,zx).
Thus, the attacker has little capacity to increase the com-
puted aggregate. However, the attacker can freely reduce
the computed minimum value, simply by choosing z] to be a
very small (or even negative) value. So long as the attacker’s
desired outcome is smaller than the correct outcome, the at-
tacker has complete control. Therefore, we consider that the
minimum is not resilient against false sensor readings. In the
presence of a single compromised node, the minimum is not
a meaningful aggregate to compute.

The maximum is insecure. By symmetry, the maximum is
also not meaningful in the presence of a compromised node.

4. VULNERABILITIESOF EXISTING
SYSTEMS

Many of today’s sensor network systems are susceptible
to the attacks described above. A few examples should to
serve to illustrate the point.

TinyDB. TinyDB is a database-centric interface to sensor
networks, where data aggregation is expressed with a SQL-
like query language [8, 5]. The database consists of a table,
where each sensor provides one row in the table, and each
row provides values for several attributes (e.g., temperature,
humidity, light, acceleration). Queries compute an aggre-
gate of the listed attribute, or of a simple boolean or arith-
metic expression of a single attribute. TinyDB supports five
conventional aggregates: the minimum, maximum, average,
count, and sum. Also, TinyDB supports temporal aggre-
gates: a sliding window of previous sensor readings is kept,
and then the minimum, maximum, average, count, or sum
can be applied to this recent history.

Based on the above discussion, we see that TinyDB is
insecure in the presence of compromised nodes when the
minimum, maximum, average, or sum aggregates (or their
corresponding temporal aggregation variants) are used. The
count (or sliding window count) is the only primitive that is
resilient to malicious data.

Other systems. TinyDB is not alone. For example, the
Cougar sensor database system supports SQL-like queries
with aggregation operators, much like TinyDB [15]. Like-
wise, the SensorWare project proposes efficient algorithms
for computing the average, maximum, and minimum, as well
as for building approximate contour maps [1]. These exam-
ples are representative of the work in the field [16]. The
popularity of aggregates like the average and the maximum
is no accident: they are both useful and easy to compute.

We emphasize that our attacks are not intended as a crit-
icism of these systems, as these systems were not designed
for security against compromised nodes. Nonetheless, this
motivates the search for aggregation primitives with better
security properties.

5. ATHEORY OF RESILIENT
AGGREGATION

After these attacks on certain aggregation operations, it
is natural to ask for a way to reason about secure aggre-
gation. We develop such a framework in this section. Two
key landmarks are worth watching for in the exposition that
follows:

1. We propose that aggregation primitives be viewed as
nothing more than statistical estimators. This allows
us to exploit the power of statistics and build on the
existing literature on statistical estimation theory.

2. We argue that the resilient aggregration problem has
close connections to the field of robust statistics, which
was developed to deal with noisy and error-prone data.
This correspondence looks fruitful, because it allows
us to borrow clever ideas that have been developed in
that field and adapt them to solve our problems.

Before we work out the details, it will be helpful to digress



for a moment to give some essential mathematical back-
ground on the classical estimation theory.

Estimation theory. Succintly put, the estimation problem
is this: Given a sequence of observations z1,..., T, from
a known parameterized distribution p(X | 6), where 6 is a
hidden parameter, the goal is to estimate 8 as accurately as
possible.

In more detail, let # denote a parameter, whose distribu-
tion is not specified. A parameterized distribution p(X | 6)
is a family of distributions, one for each possible value of 6.
For instance, N'(9,1), the Gaussian distribution with mean
6 and variance 1, is a distribution with parameter 6.

Next, let Xi,..., X, denote n random variables that are
distributed according to p(X | ) and that are condition-
ally independent given 6. In other words, imagine a ref-
eree secretly choosing a value 6, then making n independent
draws from the distribution with this fixed value of § as the
common parameter and letting X1, ..., X, denote the result
from the n draws.

An estimator is an algorithm f : R® — R, where f(z1,...,Zn)

is intended as an estimate of some real-valued function of 6.
For simplicity of exposition, in what follows we will assume
that 6 is real-valued and that we wishA’cod (festimate 0 itself.

Next, we define the random variable © = f(Xi,...,X,).
Then, for our purposes’, the relevant figure of merit is

root-mean-square (r.m.s.) error (at 6):
rms(f) = E[(© - 6) | §]'/2

Note that rms(f) is a function of 6, the underlying param-
eter; we compare functions pointwise. Also, an unbiased
estimator is one for which E[O | §] = 6 for all 6.

The r.m.s. error is a good measure of the inaccuracy or
“spread” of our estimator, and a reasonable intuition would
be to think of the r.m.s. error as representing a “typical”
value of the error term |© — 6|. For an unbiased estimator,
the r.m.s. error is exactly the standard deviation of the ran-
dom variable ©, so our usual intuitions about Gaussian dis-
tributions will often be helpful in thinking about the r.m.s.
error metric. We usually rely on the r.m.s. error to charac-
terize the quality of our estimator, and we often approximate
the r.m.s. error by its asymptotic behavior as n — co.

!The relation to standard estimation theory is as follows. In
classical estimation theory, there are three standard metrics:

MSE(f) ¥ E[(6 - 6)* | 6]

V(f) = Var[© | 6]
Bias(f) < E[O | 6] — 6

mean square error at 6:
variance at 6:
bias at 6:

A minimal-variance unbiased estimator is an estimator
where MSE(f) is minimal among all unbiased estimators.
Note that MSE(f), and the other metrics, are functions of
6. We compare functions pointwise when testing for mini-
mality, i.e., m < m' iff m(f) < m/(6) for all §. The name
“minimal-variance unbiased estimator” is justified by the
following basic identity: MSE(f) = V(f) + Bias(f)?. Con-
sequently, the unbiased estimator with minimal variance is
also the unbiased estimator with minimal mean square error
(or r.m.s. error, for that matter).

Notice that rms(f) = MSE(f)'/?, so the r.m.s. error is
closely connected to the mean square error. In this paper, we
introduced the r.m.s. metric because it is intuitive, its units
are more convenient, and it summarizes in one quantity the
figure of merit we care most about.

Application to aggregation. As others have noted before
[10, 9], statistical estimation theory is a powerful way to
think about data aggregation. One may think of the pa-
rameter § as reflecting some interesting underlying quantity
in the physical environment. However, § cannot be directly
observed. Instead, our only way to gain information on 6
is by taking n sensor measurements, which are modelled by
the random variables X, ..., X,. The aggregation function
f can then be viewed as an estimator of 6.

For instance, § might represent the average temperature
across the New York City metropolitan area, and X; the
temperature reading at the ith sensor. It is natural that
0 is a parameter (since the average temperature can vary
from day to day) and that X; is random but dependent on
0 (since sensor readings are noisy, but correlated to 8). We
might take f(z1,...,2n) = (z1 + -+ + &n)/n, so that our
estimator is the average of all sensor readings. Then, if we
have a model of the distribution p(X; | ), we can measure
the quality of the average as an aggregation function by
calculating the r.m.s. error of f as an estimator of §. This
seems like a reasonable view; when the user asks for the
average of sensor readings, usually it is not that the average
is of any inherent interest of its own right, but rather that
this aggregate is an intuitive way to estimate some hidden
parameter of interest.

Resilient estimators and resilient aggregation. A k-node
attack A is an algorithm that is allowed to change up to k
of the values X1, ..., X, before the estimator is applied. In
particular, the attack A is specified by a function 74 : R* —
R"™ with the property that the vectors z and 7a(z) never
differ at more than k positions.

We can define the r.m.s. error associated with A by

rms”(f, A) < E[(©" —6)° | 6]'/>
where ©* = f(ra(X1,...,Xn)).

To explain, ©* is a random variable that represents the ag-
gregate calculated at the base station in the presence of the
k-node attack A, and rms*(f, A) is a measure of the inac-
curacy of the aggregate after A’s intrusion. If rms*(f, A) >
rms(f), then the attack has succeeded in noticeably affecting
the operation of the sensor network. If rms*(f, A) = rms(f),
the attack has had little or no effect. We define

rms” (f, k) & max{rms"(f, A) : A is a k-node attack},

so that rms* (£, k) denotes the r.m.s. error of the most pow-
erful k-node attack possible. Note that rms*(f, 0) = rms(f).
Roughly speaking, we think of an aggregation function
f as an instance of the resilient aggregation paradigm if
rms*(f, k) grows slowly as a function of k. More precisely:

DEFINITION 1. We say that an aggregation function f is
(k, @)-resilient (with respect to a parameterized distribution
p(X; | 8)) if rms™(f, k) < a-rms(f) for the estimator f.

The intuition is that the (k, a)-resilient functions, for small
values of o, are the ones that can be computed meaningfully
and securely in the presence of up to k compromised or
malicious nodes. This is justified by the following result.

INFORMAL RESULT 1. Let f be an unbiased estimator, i.e.,
an aggregation function satisfying E[f(X1,...,X,) | 0] =6
for all§. Let o denote the standard deviation of f(X1,...,Xn)



in the absence of compromised nodes. If f is (k, a)-resilient,
then it can be computed at a base station with bias on the or-
der of Xa- o or less. Conversely, if f is not (k, a)-resilient,
then no matter how f is computed, the adversary can skew
the result by more than +a - o at least some of the time.

PROOF (INFORMAL). Since f is an unbiased estimator, we
have

rms(f) = E[(© —6)* | ]"/> = StdDev[® | 6] = o.

If f is (k,a)-resilient, then rms*(f, k) < o -rms(f) = a - 0.
In this case, the standard deviation of the aggregate (after
being disturbed by compromised nodes) is at most @ - o, so
the “typical” error term is on the order of a-o. Conversely,
if f is not (k, a)-resilient, then there is a k-node attack A
so that rms*(f, A) > a-o. For reasonable distributions, the
magnitude of the actual observed error is at least rms* (f, A)
some non-negligible fraction of the time, from which the
informal result follows. [J

With the above results, we are now ready to propose an
answer to the central question of secure aggregation: Which
functionalities can be meaningfully computed, in the pres-
ence of compromised nodes?

Answer. The aggregation functionalities that can be
securely and meaningfully computed, in the presence
of k compromised nodes, are exactly the functions that
are (k, a)-resilient for some a that is not too large.

Attack models. The above definitions are framed in terms
of what one might call omniscient attacks, i.e., attacks where
the adversary first observes all n sensor readings, then chooses
k sensors to corrupt and picks k bogus values for these sen-
sors to report in place of their actual measurements. Hence
omniscient attackers are limited only by the number of sen-
sor readings they can change. In particular, omniscient at-
tackers can dynamically choose which sensors to corrupt and
can eavesdrop or predict all other sensor readings. This
seems like an impractical threat model.

It would be more realistic to consider myopic attacks,
where the adversary can only observe and affect measure-
ments from some set of k sensors. In an adaptive attack, the
attacker can choose a sensor to corrupt, learn the reading at
that sensor, choose a replacement value based on his obser-
vation, and then choose another sensor to corrupt (possibly
based on what he has learned up to this point) and repeat
this up to k times. A weaker threat model is the static at-
tack, where the attacker must choose k sensors in advance
to corrupt; then the attacker learns those k readings and
subsequently can choose k replacements values based on the
observed values. Of course, in all cases we assume the pa-
rameterized distribution p(X; | 8) is known in advance to the
adversary. We could also consider many other refinements
to the definition.

Myopic attackers are a more reasonable threat model than
omniscient attackers, and myopic attacks correspond more
closely to standard threat models used, for instance, in the
cryptographic literature on secure multi-party computation.
However, in all the examples treated in this paper, the differ-
ence in power between omniscient and myopic attacks turns
out to be negligible. Because omniscient attacks permit
cleaner definitions, for simplicity, we will stick with them.

Robust statistics. Robust statistics is the study of statistics
when data is noisy or error-prone. Some authors suggest
that robust statistics is generally concerned with two kinds
of robustness:

1. Tolerating small errors in a large fraction of observa-
tions. For instance, perhaps many devices have small
calibration errors or are otherwise slightly noisy.

2. Tolerating large errors in a small fraction of observa-
tions. For instance, if we imagine a scientist writing
down observed values by hand, occasionally she may
misplace the decimal point. A few gross errors like
this should not render our statistical estimator useless.
Thus, a classic task of robust statistics is to develop
estimators that tolerate a small fraction of arbitrarily
contaminated observations.

Resilient aggregation is concerned with the latter challenge;
we wish to build aggregation operators that cannot be ma-
nipulated too much by a few malicious or compromised nodes.

There is a healthy literature on the field of robust statis-
tics [6, 3, 13, 14]. For instance, it is well-known in the
literature that the median is a more robust replacement for
the average. Our work has been greatly inspired by many
classic results in robust statistics.

One useful concept from robust statistics is the breakdown
point, defined as?

€ = sup{k/n : rms” (f, k) < co}.

Strictly speaking, this definition gives the breakdown point
€*(n) at n, but in practice we usually take the limit as n —
00. One small word of caution is in order: the breakdown
point is only informative when the estimator is unbounded.

The relevance of the breakdown point to sensor networks
is that the breakdown point indicates the fraction ¢* of nodes
that can be captured before security breaks down. If an
€* fraction of nodes are compromised, then the r.m.s. error
becomes unbounded, and the adversary can drive the output
of the aggregation operation to take on any value he would
like. For instance, we can easily verify that the average has
breakdown point €* = 0, because any single compromised
node can be used to skew the average by any desired amount.
Consequently, the breakdown point is one measure of the
security of an aggregation function against data spoofing
attacks.

6. SATISFACTORY AND UNSATISFACTORY
AGGREGATION FUNCTIONS

We next apply the theoretical framework sketched above
to analyze the resilience of a number of natural aggregation
functions. See Table 1 for a concise summary of our results.

Data model. Unfortunately, the resilience of a function
f depends not only on the choice of f, but also on the
parametrized distribution p(X; | ). In other words, we
will need some model for how the data from the sensors is
distributed. In practice, the exact distribution may vary
from application to application, but to make the analysis

*Note: If S C R is a set, sup S is the smallest real number
larger than or equal to every element of S. If S is finite,
sup S is just the largest element in S.



aggregate (f) error (rms(f)) |

resilience (a) | (€¥) | security level ]

minimum —
maximum —
sum Vn-o
average a/vn
[, u]-truncated average | o//m or larger
5%-trimmed average (1+¢€)-a/vn
median 1.2530/\/n
count nf(1l — 6)

0o 0 insecure
oo 0 insecure
00 0 insecure
0o 0 insecure
1+ (u—-10)/o-k/y/n | — | problematic
if k< 0.05n: 1+6.278k/n | 0.05 better
if £ > 0.05n: 00
if k<n/2: ~+/1+0.101k2 | 0.5 | much better
if k> n/2: ()
1+0(k/vn) | — acceptable

Table 1: Summary of results. This table shows several possible aggregation functions, their root-mean-square
error term in the absence of attacks, their resilience against k-node attack, and their breakdown point (¢*).
The smaller the resilience a is, the greater the security. Note that the 5%-trimmed average performs well

as long as k£ < 0.05n, and the median is even better:
perform less well.

tractable, it seems reasonable to focus on two canonical dis-
tributions.

e For continuous data, we assume that the X; come from
n independent and identically distributed (i.i.d.) ran-
dom variables with the Gaussian distribution NV(8, o)
of mean @ and variance o2, where o is fixed in ad-
vance and € represents the hidden parameter to be
estimated. It will be useful to let ¢ and ® denote the
probability density and cumulative probability func-
tions for the standard normal distribution A'(0,1), i.e.,

-y x
o(z) = \/%76 /2 and ®(z) = f,oo o(t) dt.

e For 0/1-valued data, let us assume that the X; come
from n ii.d. r.v.’s with the Bernoulli distribution, i.e.,
X; ~ Bernoulli(#), or equivalently, Pr[X; =1 | 6] =6,
where again 6 represents the hidden parameter to be
estimated.

It seems reasonable to expect that these two distributions
will form a reasonable model of sensor readings in many
practical applications.

Estimators of location. In practice, the most common goal
of aggregation is to build an estimate of location, such as
the mean or mode or median. A good estimate of location
f should satisfy several properties. It should be location
equivariant, so that f(z1+c¢,...,2n +¢) = f(x1,...,2Zn) +
c for any constant c. It should be scale equivariant, so
that f(cxi,...,cxn) = ¢ f(x1,...,2,) for any constant c.
Also, it should have permutation symmetry, so that per-
muting the inputs to f does not change its output, i.e.,
f@ray,--»Zxm)) = f(x1,...,2,) for all permutations w
on {1,...,n}. Finally, it should be robust. We will study
the robustness of several popular estimates of location.

The average and sum. Tt is easy to verify that the sum
f(z1,...,20) = 21+ -+ + T, is not (1, @)-resilient for any
constant a. For instance, for any fixed a, we can consider a
1-node attack® A that replaces the first reading z; with } =

3These attacks actually do not require the assumption that
X; ~ N(8,5”); in general, it suffices merely that rms(f) <
00, e.g., that f(X1,...,X,) has finite variance and bias.

it degrades gracefully for £ < 0.5n. The other functions

z1+ 2a-rms(f); this attack has error term rms* (f, A) = 2a-
rms(f), hence f is not (1, «)-resilient. Similarly, the average
is not (1, a)-resilient for any constant a. Put another way,
the average and sum have breakdown point €* = 0. These
points justify our claim in Section 3 that the average and
sum cannot be meaningfully computed in the presence of a
malicious sensor node.

The minimum and maximum. One can also show that the
minimum is not (1, a)-resilient for any constant c: simply
consider the 1-node attack that replaces z1 with =7 = 1 —
2a-rms(min). Likewise, the maximum is not (1, @)-resilient
for any a.

The count. In contrast, the count behaves much better.
Take f(zi,...,Zn) = z1 + --- + z, for X; ~ Bernoulli(f)

(ii.d. r.v.’s). We have rms(f) = 4/nf(1 — 6). For a k-node

attack, a simple argument shows that |@* - (:)| < k always,
so rms*(f, k) < /k? +rms(f)? < k + rms(f).

Consequently, the count is (k,a)-resilient for a = 1+ k -
(nB(1 — 0))~/2. This is a rather slow-growing function of
k, so for large n, the count appears to have good resilience
against k-node attacks. In other words, the law of large
numbers comes to our rescue: if we have a large field of
sensors and we use the count as our aggregate, we can easily
tolerate a small number of compromised nodes.

The median. The median is a safer replacement for the
average. On inputs z1,...,Tn, let z(1),...,2(,) denote the
x;-values placed in sorted order. If 4 is not an integer, let
z(;) be short-hand for %x(i_oj) + %m(i_,_oj). Then we may
define the median as f(z1,...,2,) = medici<n ;i = Z()
where r = (n +1)/2.

Note that a 1-node attack can only change the median
to something between z(,_1y and z(,41). If we have at least
three readings, these two endpoints are sensor readings from
uncompromised nodes. In general, after a k-node attack,
the median will be in the interval [z, _g), (r4&)], and when
n > 2k, the endpoints of this interval are readings from
uncompromised nodes. In summary, we see that the attacker
is not able to freely dictate the result of the aggregation



operation, but is constrained about how he can affect the
computed median.

This intuition can be quantified. For X; ~ N(6,0?), it
is well-known that rms(f) ~ 1.253 - a//n. We have cal-
culated that, for £ < n, rms*(f,k) = o - rms(f) where
a = v/1+0.101k2. Thus, f is (k,«)-resilient for this value
of a. See the appendix for a justification. The interpreta-
tion is that, in the presence of an adversary, compromised
nodes produce only a gradual increase in the error term.
These figures also show that the “price of security” is not
too high: in the absence of attack, the error term for the
median is only slightly larger (by a factor of 1.253) than the
error term for the average.

Also, the breakdown point of the median is €* = 1/2,
meaning that up to about half of the nodes may be compro-
mised without a total breakdown of security.

7. TOOLS FOR ACHIEVING RESILIENT
AGGREGATION

Next, we explore several general techniques for improving
the resilience of our aggregation functions. The focus is on
generality: the ideas presented here will be broadly applica-
ble in many settings, and we characterize their benefits and
limitations.

Truncation. One naive way to make an aggregation func-
tion more robust against spoofed sensor readings is to place
upper and lower bounds on the acceptable range of a sensor
reading. For instance, if we know that valid sensor readings
will usually be in the interval [l,u], then we can truncate
every input to be within this range. Note, for instance, that
the count can be viewed as a [0, 1]-truncated version of the
sum. In general, given any base aggregate g, we can con-
struct a truncated aggregator by applying g to the truncated
data values.

More formally, let truncy ,j(x) belifx <1, zif | <z < u,
and u if £ > u. To obtain a truncated replacement for the
raw average, set

_ truncy,y) (-’L‘l) + -+ trunc[l,u](xn)

flz1,...,z0) = .

n

We have calculated that the [I, u]-truncated average is (k, @)-
resilient for a ~ 1 + (u — l)k/(a+/n). See the appendix for
details.

The truncated aggregate is an improvement over the con-
ventional aggregate, but it is not an entirely satisfactory
solution. Wide intervals give the attacker a great deal of
power, while narrow intervals reduce the utility of the sen-
sor network. We can quantify this using the notion of the
dynamic range D of an aggregate, defined as D = (u —
l)/rms(f). In the absence of attacks, D measures the num-
ber of possible outputs after aggregation that can be distin-
guished from each other. Thus, the observed aggregate con-
veys roughly lg D bits of information about the underlying
parameter to be estimated. Also, let D* = (u—1)/rms*(f, k)
be the dynamic range in the presence of k-node attacks.

For the truncated mean, we have D ~ (u—1)y/n/0o, so the
truncated average is (k, a)-resilient for o = 1+ D-k/n. Also,
D* = D/(14+D-k/n). Notice that when D is large compared
ton/k, D" is considerably smaller (indicating poor dynamic
range under attack) and « is large (indicating poor security
under attack). When D is small, the dynamic range is poor,

meaning that the aggregate does not convey much informa-
tion even in the absence of attack.

Now we are pinned between a rock and a hard place: to
derive as much information as possible from our sensor net-
work in the absence of attacks, we need D to be large; yet
to make the truncated average as meaningful as possible in
the presence of attacks, we need D - k/n to be small. This
gives an unavoidable tradeoff between the resilience a and
the dynamic range D. This tension suggests that we should
keep looking for better techniques.

Trimming. A better choice is to ignore the highest 5% and
lowest 5% (for instance) of the sensor readings, and then
compute the aggregate on the remaining 90% of readings
in the middle. This is known as the trimmed mean in the
statistical literature. Intuitively, we might expect this to be
fairly robust to compromised nodes, so long as no more than
5% of the sensors are compromised.

Let’s work out the details. On inputs z1,...,Zn, let the
symbols z(1),..., T ) represent the z;-values in sorted or-
der. Fix a security parameter p. Let g denote the underlying
aggregation function. We construct a more resilient version
of g by defining

fﬂ(wlv .- ,ill‘n) = g(x(pn)v T(pn+1)s--- 7$(n+1—pn))-

Trimming can be viewed as a principled, automated form of
outlier elimination, where we always throw away the small-
est and largest pn observations, on the principle that they
might be outliers. Assuming that k < pn, all an adversary
can do is affect which subset of legitimate sensor readings are
used as inputs to g; however, the adversary cannot control
in any other way the inputs to g. Interestingly, the median
is a special case of the above construction, obtained by tak-
ing the limit as p — 1/2 from below. For these reasons,
trimming looks intuitively promising.

The security argument can be formalized more carefully.
We will analyze the case where g is the average, g(w1, ..., wn)
(w1 + -+ 4+ wm)/m. It turns out that rms(f,) =~ (1 +¢,) -
a/+/n, for some constant 0 < ¢, < 0.253. We have com-
puted rms*(f,, k) for the case k < an, where p is arbitrary.
See the appendix for details and for the general expression.
For instance, when a = 0.05, rms(fo.05) = (1+¢€)-o/+/n for
some small ¢, and fo.05 is approximately (k, 1 + 6.278 k/n)-
resilient for k¥ < 0.05n and (k, co)-resilient for k& > 0.05n.

In practice, the 5%-trimmed average only becomes more
accurate than the median for large n (say, n > 100 or so).
Therefore, in practice the 5%-trimmed average is unlikely
to be any better than the median. However, one of the
attractions of trimming is that it can be applied to other
aggregates as well; for instance, the 5%-trimmed maximum
might be a sensible replacement for the maximum.

Other estimates of location. Many other location estima-
tors have been proposed in the robust statistics literature.
Here we list a few that may be of interest.

The shorth is defined as the mean of the shortest sub-
sample of z1,...,z, that contains n/2 of the observations;
its breakdown point is €* = 1/2. The least median of squares
(LMS) is defined as the value y that minimizes med;<i<n (zi—
y)?; it happens to be the same as the midpoint of the short-
est subsample containing n/2 of the observations, and its
breakdown point is €* = 1/2. Both the shorth and the LMS

converge at a rate like n Y/ 3 which is abnormally slow: most



othle)r2 estimates, such as the average, converge at a rate like
n .

The Hodges-Lehmann estimator is given by f(x1,...,2,) =
medi<i<j<n(zi + x;)/2; it has breakdown point €' =1 —
v/1/2 = 0.293, and its error term is only about 7/3 = 1.05
times larger than the error term for the average. The in-
terquartile mean is given by the mean of the first and third
quartiles, i.e., f(x1,...,%0) = (%) + T(nt1-r))/2, where
r = (n+ 1)/4; it has breakdown point €* = 1/4, and its er-
ror term is only about 1.25 times as large as the error term
for the average.

The median and interquartile mean are instances of a class
of functions known as of L-estimators. An aggregate is called
a L-estimator if it can be expressed as a linear function of
the order statistics of the sample, or in other words, f is
an L-estimator if there exist constants ai,...,an, € R so
that f(x1,...,%n) = a12(1) + - + @nZ(,). The breakdown
point is determined by the first (or last) non-zero coefficient
a; # 0; namely, €*(n) = min{t — 1 : z; # 0 or Tpt1-; #
0}/n. There are other general classes of estimators as well,
including M-estimators, GM-estimators, and R-estimators,
but in general, the schemes we have described tend to be
adequate, and so we omit further details about such more
complicated estimators.

8. DISCUSSION

Pragmatic advice for implementors. The lesson of this
work is that sensor network designers need to pay attention
to security when implementing aggregation services. We
have seen a number of simple measures that can be taken
to improve security. Distilled into slogan form, our advice
for improving the security of aggregation in sensor networks
would be:

e Be aware of the threat of malicious data and of node
capture attacks. Do a risk analysis before deploying
aggregation services.

e Consider using resilient aggregation. For instance, try
using the median or the trimmed average in place of
the average.

When to use resilient aggregation. Resilient aggregation
is best-suited to settings where there is plenty of redundancy
in the data, so that we can cross-check sensor readings for
consistency. Technology trends are tilting the scales in favor
of large constellations of cheap, crude sensors, which is ex-
actly where resilient aggregation is most appropriate, rather
than small-scale deployments of a few expensive, precision-
crafted devices. As a result, we expect this increasing degree
of redundancy to make resilient aggregation applicable in an
increasing variety of applications.

However, the techniques discussed in this paper are not
always appropriate. Resilient aggregation is not a good
choice in scenarios where we are looking for a needle in
the haystack. For instance, multi-sensor fire alarm systems
may need to trigger an alarm upon the first detection of
smoke from any sensor, without waiting for corroboration
from other sensors. Resilient aggregation cannot help in this
case, and such systems must simply accept the possibility of
successful attacks.

Open problems. One major limitation of this paper is that
we did not consider in-network aggregation. There is strong
evidence that performing aggregating inside the network is
critical for achieving good performance [4]. Consequently,
supporting in-network aggregation securely is an important
open problem. Another challenge is to secure more com-
plex aggregation operations, such as algorithms for tracking
multiple objects, building contour maps, and so on.

Related work. The connection between aggregation and
statistical estimation has been exploited before [10, 9], but
as far as we know, no one has pointed out the relevance of
robust statistics.

Song et al. also explore security for aggregation in sensor
networks [12]. They, too, consider the possibility of cor-
rupted sensors, albeit from a slightly different perspective:
They consider how to reduce trust in the base station, in a
scenario where a trusted outside user queries a sensor net-
work. They focus on protocols for computing a few aggrega-
tion primitives: the median, min, max, average, and count
of distinct elements. In contrast, we assume the base station
is trusted, and we focus on classifying which functions can
be meaningfully computed.

9. CONCLUSIONS

This paper gave a theoretical framework for evaluating
data aggregation in sensor networks and its security against
attack. As we saw, many of the conventional aggregates are
unsuitable for use when some sensor nodes may be compro-
mised. One of the main contributions of this paper was to
provide a mathematical theory of resilient aggregation; we
cast the problem in terms of statistical estimation theory,
which gives a useful way to quantify the resilience of vari-
ous aggregation operators and to justify our intuition in a
principled way. Finally, we described a number of better
methods for secure data aggregation. For instance, the me-
dian is a good summary statistic, and for general-purpose
use, trimming appears to be a good way to strengthen the
security of many aggregation primitives. The author’s hope
is that this paper will stimulate further work on the problem
of secure data aggregation in sensor networks.
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APPENDIX
A. FURTHER DETAILS

We elaborate here on some calculations from Sections 6
and 7.

The median. It is known that, when the X; come from
a Gaussian distribution N(6,?), then the order statistics
behave as follows:

»o p(l—p)o’
- N6 ac TR SRS £ Al as n —
womy 4 (94 22, BES noee
where z, = & '(p). Note that the median corresponds to
the case p = 1/2. Hence, a good approximation for the
standard deviation of the median is

rms(f) = W:\/;ﬁ z1.253-ﬁ.

This is a factor of 1.253 larger than the corresponding error
term for the average, so the median is only slightly worse
than the average in the absence of any attack.

Likewise, we find that
zpo p(l—p)o®
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where p = (r + k)/n and v = (n+ 1)/2. If kK < n, then
zp = kp(0) and ¢(2p) = ¢(0), so
o? " k’a’ p(0)°
4n p(0)2 n
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A k-node attack can increase the median to at most z(, 1),
S0

as n — 0o,

E[(z(r15) — 6)°]
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Consequently, for £ < n, the median is (k, a)-resilient for

ar/1+k /72 ~/1+0.101k2.

The truncated average. An adversary who changes z; to
x; can only increase or decrease the [l, u]-truncated average
by at most the quantity (u — !)/n. Consequently,
6" - 6| < k-(u=1)

n
for every k-node attack A. (If X; ~ N(u,0?) with p =
(I+u)/2 and o < (u —1)/2, then the above bound is too
conservative by roughly a factor of two; however, it is sim-
pler to ignore these small constant factors.) Consequently,
rms*(f, k) < rms(f) + (u — )k/n. Also, rms(f) is roughly
a/+/n or larger. Thus, the [l, u]-truncated average is (k, )-
resilient for a = 1 + (u — 1)k/(o/n).

The truncation technique applies generally to many forms
of aggregation. For instance, it can also be applied to the
sum, minimum, and maximum, with results comparable to
those for the average. However, as discussed in the main
body of this paper, truncation is not without problems.

The trimmed average. Let the notation be as in Section 7.
We have a/y/n < rms(f,) < 1.253 - o/+/n, since rms(f,)
is an increasing function of p, and as p — 0.5, f, ap-
proaches the median in the limit, while the case p = 0 is just
the untrimmed average. Also, E[(2(n41-pn) — m(pn))2]1/2 is
approximately 2z0/v/n + o+/2p(1 — p)/n/p(z) where z =
@~ '(1 — p). For instance, for p = 0.05, z ~ 1.6448, ¢(2) =
0.1031, and thus typical values for the gap x(0.95n) — Z(0.05n)
are roughly 3.2900/+/n + 2.988¢/\/n = 6.278c /\/n. A k-
node attack can increase the trimmed sum wi + -+ + wp,
by about k times the above gap; then we should divide
by (1 — 2p)n to obtain the change to the trimmed average
(w1 + -+ + wp)/m. In this way, for k < pn, we can esti-
mate that rms*(f,, k) = rms(f) + ok(1 — 2p) " 'n">/?(2z +
V2p(1 — p)/p(2)) for z = ®'(1 — p). For instance, we
have rms*(fo.0s,k) =~ rms(f) + 6.2780k/n*? and fo.05 is
(k, 1+ 6.278k /n)-resilient, so long as k < 0.05n.



