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ABSTRACT
This paper presents an efficient on-line anomaly detection
algorithm that can effectively identify a group of especially
harmful internal attackers - masqueraders in cellular mo-
bile networks. Our scheme is derived from a well-developed
data compression technique. We use cell IDs traversed by
a user as the feature value. Based on this, the mobility
pattern of a user is characterized by a high order Markov
model. Ziv-Lempel data compression algorithms are utilized
to parse the data and store relevant statistical information
in a mobility trie. Moreover, the technique of Exponentially
Weighted Moving Average (EWMA) is used to efficiently
update the mobility trie in order to modify the user’s nor-
mal profile constantly. In this way, an up-to-date normal
profile is maintained. The proposed normal profile can char-
acterize the normal behavior of each user accurately and is
sensitive to abnormal changes. A threshold scheme is then
used to determine whether the mobile device is potentially
compromised or not. Simulation results demonstrate that
our proposed detection algorithm can achieve good perfor-
mance in terms of false alarm rate and detection rate for
users having regular itineraries.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks; C.3 [Computer Systems Organi-
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I.6 [Computing Methodologies]: Simulation and Model-
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1. INTRODUCTION
With the introduction of data services into cellular based

mobile wireless networks, people begin to rely on cellular
phone in their daily lives for important and sensitive tasks
such as E-shopping and E-banking. The booming new ser-
vices, while bringing great convenience, have naturally caused
serious security concerns. Although there are many authen-
tication protocols in cellular mobile networks, security is
still a very challenging task due to the open radio transmis-
sion environment and the physical vulnerability of mobile
devices.

In general, two complementary approaches exist to protect
a system: prevention and detection. Prevention based tech-
niques, like authentication and encryption, can effectively
reduce attacks by keeping illegitimate users from entering
the system. They are usually based on some symmetric and
asymmetric mechanisms to assure that users conform to pre-
defined security policies. Nevertheless, in cellular wireless
networks, the mobile devices are not physically secure: they
could be lost or stolen. Since tamper-resistant hardware and
software are still too costly for most users, such insecurity
makes all secrets of the device open to malicious attack-
ers. An attacker, once possesses the device as well as all
secrets associated with the device, he becomes an internal
user and is able to cause great damage to the whole network.
All prevention-based methods will be rendered helpless in
this situation. At this time, Intrusion Detection (ID) ap-
proaches, utilizing different techniques to model the users’
normal behavior and system vulnerabilities, come into place
to help identify malicious activities.

Generally, there are two intrusion detection techniques,
misuse based detection and anomaly based detection [5]. A
misuse based detection technique encodes the known attack
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signatures and system vulnerabilities. If it finds a match
against current activities, an alarm is generated. Misuse de-
tection techniques are not effective to detect novel attacks.
An anomaly based detection technique creates normal pro-
files of system states and user behaviors and compares them
against current activities. If a significant deviation is ob-
served, an alarm is triggered. Anomaly detection can detect
unknown attacks. However, the normal profiles are usually
very difficult to build. This is especially true for cellular mo-
bile networks due to the mobility of end users. Therefore,
how to establish normal profiles for mobile users is crucial
in designing an efficient intrusion detection algorithm.

Our work is based on such a belief: the mobile device and
all its secrets can be possessed by an attacker who in turn
can do whatever he wants without being caught (unless the
authentic owner claims the loss of device in advance). But
the attacker cannot change his personal mobility patterns
to the same as that of the authentic user, since a user’s mo-
bility pattern is a reflection of the routines of his life and
different mobile users have different favorite routes and ha-
bitual movement patterns. In this paper, on the basis of
optimal data compression [2] [24], we propose a novel ap-
proach to construct the normal profile of a mobile user, from
which an efficient detection algorithm is designed. The list
of cells traversed by a mobile user is used as the feature
value. When an intrusion occurs, the attacker masquerad-
ing the legitimate user tends to have a different movement
pattern. Therefore, we can detect anomaly by comparing
the movement patterns.

For most users, movement patterns can be captured and
modeled, and such patterns have been used broadly in im-
proving the performance of QoS provision and resource allo-
cation [23]. Nevertheless, there is a certain number of users
such as taxi drivers who do not exhibit regular movement.
It will be very hard to model those users’ movement pat-
terns. In addition, it is normal for people to occasionally
change their normal routines. For example, people on va-
cation may exhibit significant deviation from their normal
movement patterns. To summarize, we should not expect
that the detection based on mobility patterns is accurate
for all users in all situations.

Our research is not motivated to build a system to accu-
rately detect intrusions. Instead, we are aimed at providing
an optional service to end users as well as a useful adminis-
tration tool to the service provider. The attacker can cause
a huge loss for the authentic owner if the attacker makes
many long distance calls before the real owner discovers the
loss. Because of this reason, the real owner might need some
warning information via other channels (e.g., email, phone
call to home) if the system observes some abnormal behav-
ior. Such warning could be something like “we observe that
you are having a significant change of movement patterns.
Is your handheld still safe?” We believe such an optional
service will be popular. For the service provider, the system
can build a “gray list” to include the users who exhibit dra-
matic changes of movement patterns. The traffic patterns
and the behavior of the users in the “gray list” need to be
monitored with caution. As long as they try to issue some
dangerous commands to the network, immediate response
is required to avoid potential financial loss. The “gray list”
should be updated dynamically. For instance, a person who
leaves on holidays may be added into the “gray list” but will
be removed when he resumes his normal routines.

Our algorithm is derived from data compression tech-
niques [2] [24] that are both theoretically optimal and good
in practice. It has been demonstrated that data compression
is synonymous with prediction. The cells traversed by a user
during his or her call forms a string, which is modeled as a
high order Markov source. The string is parsed into phrases.
A mobility trie, or a multiway tree, is constructed on-line
to record these phrases efficiently. Based on this, we can
construct an on-line probabilistic model of user activities.
In the meantime, the technique of Exponentially Weighted
Moving Average (EWMA) is used to exponentially fade the
probabilistic model in order to make the long-term profile
up-to-date. In the on-line working phase, the user mobility
pattern is observed in terms of cell number. Finite-context
models are used to compute the probability of a particu-
lar symbol based on the sequence of characters immediately
preceding it. A blending strategy is applied to handle the im-
pacts of models of different orders and compute the normal
probability of current activity. A threshold scheme is then
utilized to decide whether current activities are abnormal or
not. We also present simulation results to demonstrate the
effectiveness of the proposed approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we present our assumptions in developing detection
techniques for cellular mobile networks. Section 3 describes
the threat model, network model, and mobility model. Sec-
tion 4 presents the details of constructing the detection al-
gorithm, including the methods of modeling the users’ mo-
bility pattern, constructing a mobility trie, and calculating
the probability of the user’s activity. The analysis of our
algorithm is also provided. Section 5 presents the simula-
tion study of our proposed detection approach. Section 6
describes the relevant work. In Section 7, we conclude the
paper and point out future work.

2. ASSUMPTIONS
Our detection algorithm relies on the following assump-

tions:
First, we assume that each mobile user has a mobility

database that describes his normal activities. In a cellular
mobile network, this mobility database is stored together
with the mobile user’s personal information, such as billing
information, in the Home Location Register (HLR). We as-
sume HLR is secure and the movement information is accu-
rate. Usually, because of its importance, HLR is protected
with highly secure measures, and thus it is extremely hard
to attack HLR. Also, the update of location is usually based
on the device’s current serving cell and the hardware reg-
istration such as the series number of SIM card. It will be
hard for the attacker to hide or fabricate his location if he
uses the captured mobile device. Even if an attacker finds
some magical way to fabricate his location, he still has no
idea what is the normal movement profile of the real device
owner.

Second, we assume mobile devices can be compromised
and all secrets associated with the compromised devices
are open to attackers. This assumption is reasonable since
currently tamper-resistant hardware and software are still
costly to handheld devices. This assumption justifies our re-
search in anomaly detection, since all prevention techniques
will be rendered helpless once the mobile device is captured
and compromised.

Finally, we assume most users have favorite or regular
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itineraries. Therefore, it is viable to create the normal move-
ment profile for each user. Actually, all research on intrusion
detection is based on two assumptions: 1) the subject activ-
ity is observable, and 2) the normal and malicious activities
demonstrate distinct behavior. If a user has totally random
behavior, for example, the movement of a taxi driver, it
will be very difficult, if not impossible, to create his normal
movement profile. For such type of users, our current feature
selection based on mobility patterns is inaccurate. Never-
theless, our method is automatically user-selective since the
optional warning service mentioned in the introduction sec-
tion will tend to give many false warning messages to this
type of users and force them to unsubscribe such service.

3. MODEL DESCRIPTION

3.1 Network Model
Most of the previous work on wireless cellular networks

uses structured graph network topology models, such as
hexagonal or square cell configurations. However, these
models may not accurately represent a cellular network in
practice, where the cell shape and size may vary depending
on the antenna radiation pattern and propagation environ-
ment. In wireless cellular networks, each cell usually has
a base station to serve it. Therefore, in our system, the
wireless cellular network is modeled as a generalized graph
G = (V, E). The vertex set V represents all the base sta-
tions. If two cells are adjacent to each other, there is an
edge between their two vertices. An example of the model
is illustrated in Fig. 1 and Fig. 2.
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Figure 1: An Example of Cellular Network.
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Figure 2: The Graph Model of Cellular Network.

In this example, the vertex set is V = {a, b, c, d, e, f, g, h, i},
and the edge set is E = {(a, b), (b, c), ...(f, i)}.

3.2 Mobility Model
The random walk model has been widely used in the lit-

erature, in which a mobile user will move to any one of the
neighboring cells with equal probability after leaving a cell.
This may not be realistic in practice, since mobile users nor-
mally travel with a destination in mind. Therefore, we use
the m-th order Markov model in this paper. In such a model,
the mobility of a user can be represented by a sequence of
symbols, C1, C2, C3, . . . , Ci, . . . , where Ci denotes the iden-
tity of the cell visited by the mobile. Since the future loca-
tions of the mobile are likely to be correlated with its move-
ment history, the sequence of symbols C1, C2, C3, . . . , Ci, . . .
is assumed to be generated by an m-th order Markov source,
where the states correspond to the contexts of the previous
m symbols. The probability that the user moves to a par-
ticular cell depends on the location of the current cell and a
list of cells recently visited.

4. MOBILITY PREDICTION BASED
ANOMALY DETECTION

In this section, we introduce the construction of the prob-
abilistic prediction algorithm with user’s mobility patterns.
The anomaly detection problem is to characterize the behav-
iors of each individual in terms of temporal cell sequences.
The mobility database of each specific user with regular
itineraries, the mobility trie, is constructed from the accu-
mulative history of the user’s movement pattern. The recent
normal profile of the user is built by applying EWMA tech-
niques to the mobility trie. This modified mobility trie will
serve as the normal profile of the user in the recent past. It
reflects the stationary part of the user’s regular mobility pat-
tern. Based on this, we use a blending scheme to calculate
the probability of each user’s activity. The whole scheme is
illustrated in Fig. 3.

cell string: aabbabcccabaaba

m-th Markov model

Data
Compression

Feature extraction : cell list

Mobility Database: Mobility Trie

EWMA

User mobility
activity

Normal Profile: EWMA based
Mobility Trie

Compute
Distance

Generate
Alert or not

 

Figure 3: General Strategy of Mobility Prediction

Based Anomaly Detection.

Similar approaches have been used in [1] to solve the lo-
cation management problem and also in [23] to solve the
call admission control and bandwidth reservation problem.
However, the constructed mobility database cannot be used
in the field of intrusion detection effectively because it does
not take into consideration mechanisms to reflect the recent
activities of the subject. We also derive a new Distance
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measure that could provide good criteria to evaluate the
normalcy of the user’s itineraries.

4.1 Feature Extraction
The first step in intrusion detection is to extract effective

features. Features are security related measures that could
be used to construct suitable detection algorithms. Effective
features must be selected to reflect the subject activities. For
example, the short sequence of system calls of privileged
program is stable and used to construct detection models
with good performance [25]. In our environment, we build
the normal profiles of mobile users with regular movement
patterns in cellular mobile networks. Under the assump-
tion that each user will have his own favorite itineraries, cell
numbers traversed by each user is an ideal candidate fea-
ture for our usage. It is relatively stable and the resulting
alphabet is small. To be specific, we denote each cell as a
symbol. Therefore, a string could represent the path taken
by a user. This string will feed into our model to construct
the mobility trie.

4.2 Optimal Data Compression
Ziv-Lempel algorithms [2] have been widely used in data

compression. Since its invention, many variations have been
developed. LZ78 is one of the most popular one. It is both
theoretically optimal and good in practice. Being a char-
acter based Ziv-Lempel algorithm, LZ78 parses the input
string in a greedy manner and breaks the input string (i.e.
a cell list) S into variable length phrase x1, x2, ..xn with the
following property: for j > 1, there exists a number i < j,
which makes xj equal to xi plus some character c, where c
is one character in the alphabet. This is called the prefix
property [2]. A mobility trie is suitable to store the parsed
phrases.

A trie is a multiway tree with a path from the root to a
unique node for each string represented in the tree. In a trie,
only the unique prefix of each string is stored because the
suffix can be determined by searching the string. A longest
match is found by following down the tree until no match is
found, or the path ends at a leaf.

Here is an example of how to construct a mobility trie.
Suppose the alphabet is (a, b, c), and the string is
aabbabcccabaaba. Based on the greedy parsing manner, this
string will be parsed into (a)(ab)(b)(abc)(c)(ca)(ba)(aba).
After the whole string is processed, the constructed mobility
trie is shown in Fig. 4. The number associated with each
node indicates the frequency this node has been parsed in
the construction of the mobility trie.

root

b, 2a, 4 c, 2

b, 3

c, 1 a, 1

a, 1 a, 1

 

Figure 4: An Example Mobility Trie.

This trie characterizes the transition probability of the
string aabbabcccabaaba. Given a trie and an order, we can

calculate the probability of a given string from the mobility
trie. For example, in Fig. 4, there are 4 a from the root.
Therefore, the probability of a at the root is 4

8
= 1

2
. Simi-

larly, the probability of b and c at the root is both 1

4
. The

probability of b from a is 3

4
. We will demonstrate later how

to use this probability to measure the normalcy of a string.

4.3 Probability Calculation
The probability calculation is based on the Prediction by

Partial Matching (PPM) [4] scheme. Here, we use a context
model to predict the next symbol based on the previous
consecutive symbols. Specifically, we use a m-th Markov
model to model the sequence. That is, we use the consecutive
previous m symbols to predict the next symbol and calculate
its probability.

We have a tradeoff here. If the order m is too small, the
prediction will be poor in the long run because little of the
audit data will be available to make decision. However, if
the order is too large, most contexts will seldom happen,
and initially the probability estimation will have to solely
rely on the resolve of zero-frequency problems [2]. Based
on these considerations, we take a blending approach, where
the predications of several contexts of different lengths are
combined into a single overall probability. It uses a number
of models with different orders to compute the probabilities
respectively and assign a weight to each model and calculate
the weighted sum of the probabilities.

Let’s denote the maximum order as m. The next char-
acter, denoted by α, is predicted on the basis of previous
i characters. For each character α, let pi(α) be the proba-
bility assigned to α by the finite-context model of order i.
Note that when i is zero, the probability of each character is
estimated independently of other characters. If the weight
given to the model of order i is wi, the blended probability
p(α) is computed as:

p(α) =
m∑

i=0

wi ∗ pi(α)

where the sum of weights should be normalized to 1. Gen-
erally, the larger the order, the larger the weight assigned
to it, because context models with larger orders tend to be
more accurate and should weight more in the current nor-
mal profile. The maximum order m and the weight wi are
design parameters. We will discuss them later in Section 5.

4.4 Anomaly Detection Algorithm
We take a data compression based method to deal with

the anomaly detection problem, which trains a classifier with
known “normal” data to distinguish normal from anomalous
behaviors.

4.4.1 Integration of EWMA into Mobility Trie
In anomaly detection, each subject has a normal profile.

Even for an individual subject, its activity may change over
time. Therefore, it is necessary for the normal profile to be
updated in order to reflect the recent activities in time. In
our situation, the normal profile of the user activity should
be dynamic. Generally, activities in the recent past should
weight more than activities long time ago. A suitable mech-
anism should be applied to adaptively modify the normal
profile correspondingly.

Based on the above considerations, we integrate EWMA

64



[26] to the mobility trie constructed above. The mobility trie
is modified when a new phrase is formed during the string
parse. When a new phrase is inserted or used to modify the
frequency of the mobility trie, we say an event happens and
the time increases by 1. Note that this event corresponds to
a sequence of symbols. We do not need to do an extra trie
search to modify the frequency. Instead, it could be done at
the same time with the update of the mobility trie. In this
way, the modifications can be done efficiently.

The mobility trie is modified in the following way. At time
t, the frequency of each node in the mobility trie is updated
as:

•
Fi(t) = λ ∗ 1 + (1 − λ) ∗ Fi(t − 1)

where node i is one item of the corresponding events;

•
Fi(t) = λ ∗ 0 + (1 − λ) ∗ Fi(t − 1)

where node i is not one item of the corresponding
events.

Here Fi(t) is the frequency value stored in node i at time
t. λ is a smoothing constant that determines the decay rate.
The frequency value of a node that has not been observed
from time (t − k) to t will be decayed to (1 − λ)k. In this
way, the frequency of each node measures the intensity of
this node over the recent past.

In our later experiment, we set λ to 0.3, a commonly used
value for the smoothing constant [3], that is, when a node
is newly inserted into the mobility trie, its frequency value
is set to 0.3.

Continuing the example illustrated in Fig. 4, we illus-
trate how to integrate EWMA into the construction of the
mobility trie. When the first symbol a is parsed, the corre-
sponding mobility trie is illustrated in Fig. 5.

root

a, 0.3 a: Initialized to 0.3
 

Figure 5: When a is parsed.

When ab is parsed, the corresponding mobility trie is il-
lustrated in Fig. 6.

root

a, 0.51

b, 0.3
a: 0.51=0.3*1+(1-0.3)*0.3

b: Initialized to 0.3  

Figure 6: When (a)(ab) is parsed.

When b is parsed, the corresponding mobility trie is illus-
trated in Fig. 7.

As we can see, the frequency value associated with each
node is exponentially faded.

The EWMA based mobility trie construction is summa-
rized in Fig. 8.

root

a, 0.357

b, 0.21

b, 0.3

a: 0.357=0.3*0+(1-0.3)*0.51

b(left): 0.21=0.3*0+(1-0.3)*0.3

b(right): Initialized to 0.3  

Figure 7: When (a)(ab)(b) is parsed.

 

 initialize mobility database := null 

 

LOOP 

     wait for a sequence s 

 

  IF (the mobility trie of the mobile exists) 

    IF (a path p corresponding to s is found) 

add s to the mobility trie 

using EWMA to modify the frequencies of nodes 

    ELSE 

      create new nodes, and initialize their frequencies to λ 

  ELSE 

   1) create a mobility trie := single sequence s 

   2) initialize the frequencies for every node in sequence  

s to λ 

  

FOREVER 

Figure 8: Integrating EWMA into Mobility Trie

Construction.

4.4.2 The Distance Measure
EWMA based mobility trie maintains the stationary part

of each user’s recent activities. Based on this, we could
accurately predict whether the future activities are normal
or not.

Let S = (X1, X2, . . . , Xn) denote the observed activities
of the user, where Xi denotes a cell number. We want to
identify whether it is normal or not based on our constructed
mobility trie. First, we use a high order Markov model to
compute its blending transition probabilities.

For order i ≥ 1, suppose its associated weight is wi, we
define its o-th order transition probabilities as:

Po =

n−o∑

i=1

P (Xi+o|Xi, Xi+1, . . . , Xi+o−1)

When it is order-0 model, the probability is calculated as:

P0 =
n∑

i=1

P (Xi)

To calculate the probability of the transition (Xi, Xi+1, . . . ,
Xi+o−1) −→ Xi+o, we search from the root the path (Xi, Xi+1,
. . . , Xi+o−1). If the path could be found, the probability
P (Xi+o|Xi, Xi+1, . . . , Xi+o−1) is defined as:
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P (Xi+o|Xi, Xi+1, . . . , Xi+o−1) =
F (Xi+o)

F (Xx+o−1)

If the path (Xi, Xi+1, . . . , Xi+o−1) is not found, its prob-
ability is assigned 0.

Suppose the blending weight vector is [w0, w1, . . . , wm],
the probabilities of string S is defined as:

P =

m∑

i=0

wi ∗ Pi

Intuitively, P increases with the increase of S’s length
because more transitions will be considered when S is longer.
Therefore, P is not a good metric. We propose to use the
following metric as our distance measure:

Distances(S) =
P

Length(S)

where Length(S) is the length of string S.
Based on our definition, the distance measure could be

normalized by the length of the string and provides good
criteria to evaluate its normalcy. Intuitively, Distance indi-
cates how good a mobile user follows its routines.

For the input string S, we calculate its Distance(S). When
a user follows one of its favorite itineraries, because this
path is reflected in the mobility trie, many of its transitions
at different orders will be found. Based on our definition,
Distance(S) will be a relatively large value. However, when
the mobile is stolen, and the intruder takes an infrequent
path, the distance of this string tends to be a very small
value, because many transitions cannot be found in the mo-
bility trie.

We introduce a threshold, Pthr, which is a design param-
eter. When Distance(S) ≥ Pthr, string S is evaluated as
normal, otherwise string S is identified as anomalous. Suit-
able mechanisms should be developed to establish the cor-
responding connection between the mobility level and the
threshold. This is one of our important future work.

Because our mobility trie records the most frequently used
path of a user, it is very sensitive to anomalous paths, even
if they are very short strings. This enables our detection
algorithm to detect the abnormal very quickly - an important
quality for reducing potential damage by a malicious user.
At the same time, our detection algorithm enjoys a very high
detection rate. Also, when a frequently used path is taken,
our detection algorithm can tolerate its slightly variation
and lead to small false positive rate.

4.5 Theoretical Analysis of the Intrusion
Detection Scheme

Since our intrusion detection scheme is derived from Ziv-
Level data compression algorithm, we first analyze the opti-
mality of word-based Ziv-Level algorithm and show that the
character-based Ziv-Lempel algorithm is at least as good as
the word-based scheme. Then, we will show that our intru-
sion detection scheme inherits the optimality of these data
compression algorithms.

Given a sequence xn of length n, word-based Ziv-Lempel
data compressor parses it into different phrases, x1, x2, . . . , xt.
Let t(xn) denote the maximal possible number of distinct
phrases. Define q(xn) = t(xn) log(t(xn))/n log(α). For an

information lossless (IL) data compressor C accepting a
sequence xn of length n over alphabet A of α letters, let
|C(xn)| denote the length of the output from C. The com-
pression ratio ρC(xn) can be calculated as [24]: ρC(xn) =
|C(xn)|/n log(α). Let ρσ(xn) denote the best compression
ratio attainable for xn by any IL compressor. It is shown
that [24]

ρσ(xn) ≥ q(xn) − δ(σ, n) with lim
n→∞

δ(σ, n) = 0.

The above result shows that word-based Ziv-Lemple algo-
rithm achieves a compression ratio that is (asymptotically)
equal to q(xn), which means that the algorithm is universal
and asymptotically optimal.

The coding length obtained in the character-based Ziv-
Lempel algorithm is shown in [2] to be as least as good as
that obtained using the word-based approach. Therefore,
the character-based Ziv-Lempel algorithm is also universal
and asymptotically optimal.

Define the false alarm rate to be the total number of event
false alarms that our scheme incurs divided by the total
number of alarms. Moreover, we define the expected false
alarm rate to be the best possible false alarm rate achiev-
able by any intrusion detection algorithm that makes its
prediction based only on the past history.

Theorem 1. If the source is a stationary m-th order Markov
source, the expected value of the false alarm rate of the intru-
sion detection scheme derived from the Ziv-Lempel algorithm
is within an additive factor of O(1/

√
n) from the expected

false alarm rate of the source, where n is the length of the
source sequence.

For a proof of Theorem 1, please refer to [27]. The same is
true for detection rate. This theorem shows that our intru-
sion detection algorithm inherits the asymptotic optimality
of the Ziv-Lempel algorithm after it converges.

4.6 Implementation issues
In practice, an important issue is how to store the mobil-

ity information in a trie. A trie is actually a multiway tree
with a path from the root to a unique node for each string
represented in the tree. The fastest approach for processing
is to create an array of pointers for each node in the trie with
a pointer for each character of the input alphabet. Although
this approach is easy for processing, it wastes memory space.
Another approach is to use a linked list at each node, with
one item for each possible branch. This method uses mem-
ory economically, but the requirements for processing are
intensive. A trie can also be implemented as a single harsh
table with an entry for each node. For further details, the
reader can consult books on algorithms and data structures.

5. SIMULATION STUDY

5.1 Data Sets
A generalized graph model is used in our simulations to

represent a cellular network of 40 cells, each having six
neighbors on average. The average distance between two
base stations is 1 mile. To avoid the edge effect of the finite
network size, wrap-around is applied to the edge cells. Since
most mobile users have favorite routes in reality, we assume
that each mobile user has five possible paths in the network.
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A mobile user will take these five paths with probabilities
of 0.6, 0.2, 0.1, 0.05, 0.05, respectively. The paths are gener-
ated as follows. (1) Select two cells in the graph randomly
as original and destination cells. (2) Whenever the mobile
user leaves the current cell, it moves to a neighboring cell
that is closest to the destination. Call durations are the
same for all calls and exponentially distributed with mean
value of 3 minutes. With a fixed call duration, the higher
the speed, the longer the cell list. Since mobile users travel
with different speeds, we consider five cases of user mobility.
The speeds of mobiles are 20, 30, 40, 50, 60 miles/hour in
the five cases, respectively.

In our simulation, we manually set m to 2. That is, we
apply a blended Markov model with order-0, order-1, and
order-2, respectively, to the data sets. For order-0, we set
w0 to 0.7. For order-1 and order2, we set w1 and w2 to 0.2
and 0.1, respectively.

Note that the mobility data set we generated are generic
enough for most users. However, it may not be suitable for
users with totally random movement behavior such as taxi
drivers.

5.2 Performance Metric
We use the following two metrics to evaluate the perfor-

mance of our proposed detection algorithm:

• False Alarm Rate: It is measured over normal itineraries.
Suppose m normal itineraries are measured, and n of
them are identified as abnormal, false alarm rate is
defined as n/m.

• Detection Rate: It is measured over abnormal itineraries.
Suppose m abnormal itineraries are measured, and n
of them are detected, detection rate is defined as n/m.

5.3 Simulation Results
In this section, we present and analyze the simulation re-

sults at different mobility levels.

5.3.1 False Alarm Rate
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Figure 9: False Alarm Rate at Different Mobility

Levels.

Simulation results of the false alarm rate are illustrated
in Fig. 9. As we can see, generally, the false alarm rate is
very low. Also, the false alarm rate decreases with the in-
crease of the mobility, This is what we have expected. With
the increase of mobility, the user tends to traverse more
cells in a call. Therefore, for a normal user with regular
movement pattern, his itinerary will demonstrate more re-
semblance to his regular activities that is recorded in the
mobility trie. Therefore, the probability normalized by the

itinerary length is relatively stable. In the way, the false
positives are reduced.

However, when the mobility is very low, each user will
traverse only one or at most two cells in a call. This makes
it very difficult to identify whether it is normal or not.
Some users may occasionally demonstrate abnormal behav-
iors. This could also lead to false positives. When the
itinerary is relatively long, it is still possible to generate
false positives. This is because the valid paths taken in the
training data may happen with very low probability. There-
fore, even if the similar path is taken again, it is still possible
to be identified as an abnormal path.

5.3.2 Detection Rate
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Figure 10: Detection Rate at Different Mobility

Levels.

Simulation results of the detection rate are illustrated in
Fig. 10. As we can see, generally, the detection rate is very
high. Also, the detection rate increases with the increase
of the mobility. The reason is similar. With the increase
of the mobility level, each user tends to have more cells
traveled. Therefore, for a masquerader, his itinerary tends
to deviate significantly from the normal profile. In this way,
the detection rate is improved with the increase of mobility.

When mobility is very low, because of similar reasons, it
is still difficult to detect these abnormal itineraries. From
the simulation, we cannot achieve 100% detection rate in any
case, since when the itinerary is relatively long, it is possible
that part of the intruder’s path overlap with some normal
path. Therefore, it is still possible to miss the detection of
these kinds of itineraries.

6. RELATED WORK
There are two important intrusion detection techniques:

misuse detection and anomaly detection. [5] presents a good
taxonomy of existing technologies. The research of intru-
sion detection began with a report by Anderson [6] followed
by Denning’s seminal paper [7]. Since then, many research
efforts have been devoted to different detection techniques.
For example, Expert system [8] [9], pattern recognition [10],
colored petri nets [11], and state transition analysis [12] [13]
have been used to construct misuse based detection tech-
niques. Different statistical approach [8] and Neural Net-
works [14] have been used to construct anomaly based detec-
tion techniques. All existing approaches take into consider-
ation domain specific knowledge to build suitable detection
systems.

Relatively few research efforts have been devoted to intru-
sion detection research of wireless networks. In [15], Samfat
et al. proposed IDAMN (Intrusion Detection Architecture
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for Mobile Networks) that includes two algorithms to model
the behavior of users in terms of both telephony activity
and migration patterns. Marti et al. [16] proposed to in-
stall extra facilities, watchdog and pathrater, to identify a
particular routing misbehavior in Mobile Ad Hoc Networks
(MANETs). Zhang et al. [17] proposed a general intrusion
detection and response mechanism for MANETs, in which
each IDS agent participates the intrusion detection and re-
sponse tasks independently. Continuing their research, Yian
et al. [18] used cross feature analysis to analyze the routing
activities and investigate how to improve the anomaly de-
tection approach, and provided more details on attack types
and sources in [19]. Sun et al. [20] presented a Markov
Chain based anomaly approach for MANETs and proposed
a ZBIDS framework [21] to enable alert aggregation and cor-
relation.

7. CONCLUSIONS AND FUTURE WORK
Based on optimal data compression, this paper presents a

novel approach to construct the mobility profile of users in
wireless cellular networks. Each user’s itinerary is modeled
as a m-th Markov source and EWMA is applied to make the
normal profile up-to-date. An intrusion detection algorithm
is then developed to detect potential internal attackers -
masqueraders. Simulation results demonstrate that our ap-
proach can achieve desirable performance in terms of false
alarm rate and detection rate for users having normal move-
ment patterns. Our detection method can be used to build
an appealing service to end users as well as a useful tool to
service provider.

Our system right now only considers the mobility pat-
terns, which may not be accurate for some particular type
of users such as taxi drivers. More features such as call his-
tory and activities will be accommodated into the system to
make it suitable to all users.
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