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Abstract—Location information is an important feature in
users’ profiles in cellular mobile networks. In this paper, by
exploiting the location history traversed by a mobile user, two
domain-independent online anomaly detection schemes are de-
signed, namely the Lempel–Ziv (LZ)-based and Markov-based
detection schemes. The authors focus on the identification of a
group of especially harmful internal attackers—masqueraders.
For both schemes, cell IDs traversed by each mobile user are
extracted as the feature value. Specifically, the mobility pattern
of each user is characterized by a high-order Markov model. The
LZ-based detection scheme from the well-developed data compres-
sion techniques is derived. Moreover, the technique of exponen-
tially weighted moving average is used to modify a user’s normal
profile dynamically. The user profile can characterize the normal
behavior of each user accurately and is sensitive to abnormal
changes. For the Markov-based detection scheme, a fixed-order
Markov model is used to characterize the normal behavior. Based
on the constructed probability transition matrix, the probability
of the user’s current activity is calculated. A threshold policy is
then used in both schemes to determine whether a mobile device is
potentially compromised or not. Simulation results are presented
to show the effectiveness of the proposed schemes. Moreover, our
results show that the LZ-based detection scheme performs better
than the Markov-based detection scheme, especially for low-speed
mobile users.

Index Terms—Anomaly detection, cellular mobile networks,
mobility.

I. INTRODUCTION

IN RECENT years, the rapid development of cellular mobile
data services has made people increasingly rely on cellular

phones in their daily lives for important and sensitive tasks
such as E-shopping and E-banking. The booming new services,
while bringing great convenience, have caused serious security
concerns. Although there are many authentication protocols in
cellular mobile networks, designing a highly secure cellular
mobile network is still a very challenging issue due to the open
radio transmission environment and the physical vulnerability
of mobile devices.
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In general, two complementary classes of approaches exist to
protect a system, namely 1) prevention-based approaches and
2) detection-based approaches. Prevention-based techniques,
such as authentication and encryption, can effectively reduce
attacks by keeping illegitimate users from entering the system.
They are usually based on some symmetric or asymmetric
mechanisms to ensure that users conform to predefined security
policies. However, the experience in security of wired networks
indicates the necessity of multilayer and multilevel protections
because there are always some weak points in the system that
are hard to predict. This is especially true for mobile networks,
given the low physical security of mobile devices. The attackers
could utilize various techniques to crack the secrets embedded
in mobile devices. Currently, tamper-resistant hardware and
software are still expensive or unrealistic for mobile devices.
Therefore, if a device is compromised, all the secrets associated
with the device become open to the attackers, rendering all
prevention-based techniques helpless and resulting in great
damage to the whole system. To solve this problem, intrusion
detection systems (IDSs), which serve as the second wall of
protection, could effectively help identify malicious activities.

Generally, there are two intrusion detection techniques,
namely 1) misuse-based detection and 2) anomaly-based de-
tection [2]. A misuse-based detection technique encodes the
known attack signatures and system vulnerabilities and store
them in a database. The system monitors the current subject
activities. If it finds a match between the current activity and the
signature, an alarm is generated. Misuse detection techniques
are not effective to detect novel attacks because of the lack
of corresponding signatures. An anomaly-based detection tech-
nique creates normal profiles of system states or user behaviors
and compares them with the current activities. If a significant
deviation is observed, the system raises an alarm. Anomaly
detection can detect unknown attacks. However, the normal
profiles are usually very difficult to build for cellular mobile
networks due to the mobility of end users. Therefore, establish-
ing normal profiles of mobile users is crucial in designing an ef-
ficient intrusion detection scheme in cellular mobile networks.

Lin et al. [1] proposed an excellent study to detect the
potential fraudulent usage of cloned phones in cellular mobile
networks. In this paper, we propose two different approaches to
establish normal profiles of mobile users, from which efficient
intrusion detection schemes are designed. Our work is based on
such a common observation: A mobile user usually travels with
a specific destination in mind and tends to follow the shortest
path to it. A user’s mobility pattern is a reflection of the routines
of his daily life, and most mobile users have favorite routes
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and habitual movement patterns. Although an attacker can com-
promise all the secrets associated with a mobile device, he/she
could not follow the movement pattern of the authentic owner.
That is, the masquerader tends to have different routines. By es-
tablishing an accurate normal profile that can reflect the normal
movement pattern and comparing it with the current mobility
pattern, we could thus effectively identify misbehaviors.

Both of our approaches are based on recent advances in mo-
bility prediction techniques in cellular mobile networks [3]–[6].
It is shown that mobility prediction can significantly improve
the performance of mobility management [3], QoS provisioning
[4], and resource management [5] in cellular mobile networks.
However, to the best of our knowledge, the design of efficient
schemes to detect misbehaviors based on mobility prediction
techniques has not been addressed in previous work, which is
the gap that we want to fill in this paper.

We use the cell list traversed by a mobile user during
his/her call as the feature value in intrusion detection. Our
first intrusion detection scheme is based on Lempel–Ziv (LZ)
data compression techniques [7], which are both theoretically
optimal and good in practice. It has been demonstrated that data
compression is synonymous with prediction [8]. A mobility
trie, or a multiway tree, is constructed online to record the cells
efficiently. We then use the mobility trie to derive a probabilistic
model of the user’s mobility pattern. The second proposed
scheme is based on Markov prediction techniques. We apply
a fixed-order Markov model to the extracted cell string and
compute the transition probability of the next location given
the previous locations. A threshold policy is applied to both
schemes to decide whether the current activities are abnormal or
not. Simulation results are presented to show the effectiveness
of the proposed schemes.

II. RELATED WORK

This paper has two important aspects of related work, namely
1) intrusion detection and 2) location prediction.

Furthermore, there are two important intrusion detection
techniques, namely 1) misuse detection and 2) anomaly detec-
tion. A good taxonomy of existing technologies is presented in
[2]. The research of intrusion detection began with Denning’s
seminal paper [14]. Since then, many research efforts have been
devoted to different detection techniques. For example, expert
system [15], colored petri nets [16], and state transition analy-
sis [17] have been used to construct misuse-based detection
techniques. Different statistical approaches [15] and neural net-
works [18] have been used to construct anomaly-based detec-
tion techniques. All existing approaches take into consideration
domain specific knowledge to build suitable detection systems.

Compared to the research on intrusion detection for wired
networks, relatively few research efforts have been devoted
to intrusion detection research of wireless networks. In [19],
Samfat and Molva proposed the intrusion detection architecture
for mobile networks (IDAMN), which includes two algorithms
to model the behavior of users in terms of both telephony activ-
ity and migration patterns. Lin et al. [1] proposed an excellent
study to detect the potential fraudulent usage of cloned phones
in cellular mobile networks. In [20], Büschkes et al. applied the

Bayes decision rule to user’s mobility patterns to increase the
security in mobile networks.

Location prediction schemes have been proposed in many
other research areas of wireless cellular networks. It could
be used to improve the performance of mobility management
[3] and call admission control [4]. In [13], Song et al. used
extensive real Wi-Fi data to evaluate LZ-based and Markov-
based location predictors. A recent survey of location predictors
is presented in [6].

III. MOTIVATIONS

For most mobile users in cellular networks, movement pat-
terns can be captured and modeled. We can learn the pattern
from the mobility history of an authentic user and identify
intruders by comparing the current mobility information with
the normal movement pattern. Nevertheless, there are a certain
number of users such as taxi drivers who do not exhibit regular
movement patterns. It will be very hard, if not impossible, to
model those users’ movement patterns. In addition, it is normal
for people to change their normal routines occasionally. For
example, people on vacation may exhibit significant deviation
from their normal movement patterns, and different vacation
routines will lead to very rare events. All these factors may
result in the inaccuracy of the established normal profile. There-
fore, we should not expect that our detection based on mobility
patterns is accurate for all users in all situations.

Based on these considerations, our research is not motivated
to build a system to accurately detect all intrusions. Instead,
we are aimed at providing an optional service to end users
as well as a useful administration tool to service providers.
The attacker can cause a huge loss for the authentic owner
if the compromised cellular phone is not identified in time.
Because of this reason, the real owner might need some warning
information via other channels (e.g., email, phone call to home)
if the system observes some abnormal behavior. Such warning
could be something like, “We observe that you are having a
significant change of movement patterns. Is your handheld still
safe?” We believe that such an optional service will be popular
given the increasing number of security related incidents of
wireless networks. For the service provider, the system can
build a “gray list” to include the users who exhibit dramatic
changes of movement patterns. The traffic patterns and behav-
iors of the users in the “gray list” need to be monitored with
more cautions. As long as they try to issue some dangerous
commands to the network, immediate response is required to
avoid potential financial loss. The “gray list” should be updated
dynamically. For instance, a person who leaves on holidays
may be added into the “gray list” but will be removed when
he resumes his normal routines. The similar strategy has been
used in credit card companies. For example, a customer will be
called if the abnormal usage of his/her credit card is detected,
such as the card being used at another country that is not the
owner’s residence and the owner frequently visits.

Our proposed approach requires the tracking of people’s
locations. It is a location tracking service that is based on the
system tracking users’ locations, which are, in our case, the cell
list traversed by each user. This will give rise to user’s location
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privacy issues. Therefore, our system provides the user with an
option to turn off this service or not. Privacy concerns must be
properly addressed before we can deploy this kind of service.
It is worth noticing that location privacy issues have attracted
much attention from the research community, for example, [9].
Therefore, it is promising to integrate our proposed service with
other existing location privacy protection schemes.

IV. ASSUMPTIONS

We have the following assumptions in designing mobility-
based anomaly detection schemes.

First, we assume that there is a mobility database for each
mobile user that describes his normal activities. This is a
reasonable assumption in cellular mobile networks because this
mobility database could be constructed by location tracking
and prediction services. This mobility database could be stored
together with the mobile user’s personal information, such
as billing information, in the home location register (HLR).
Note that in realistic networks, the locations of mobile users
are actually tracked for the purpose of service provision and
smooth handoff, even though the end users may be unaware
of such monitoring. We assume that HLR is secure and the
movement information is accurate. In most cases, because of
its importance, HLR is protected with highly secure measures,
and thus, it is extremely hard to be compromised. Furthermore,
the update and registration of the location is usually based on
the device’s current serving cell and the hardware registration
such as the serial number of SIM card. Therefore, it will be
hard for the attacker to hide or fabricate his location even if he
has compromised all the secrets of the mobile device. Even if
an attacker finds some magical way to fabricate his location, he
still has no idea about the normal movement profile of the real
device owner.

Second, we assume that mobile devices can be compromised
and all secrets associated with the compromised devices are
open to attackers. Under this assumption, we do not need to
assume or apply tamper-resistant hardware and software, which
are still costly and impractical to handheld devices. This as-
sumption justifies our research in anomaly detection, because
all prevention techniques will be rendered helpless once the
mobile device is captured and compromised. Actually, if we
could assume the tamper resistance of hardware/software, the
whole security research could become much easier.

Third, we assume that most users have favorite or regular
itineraries. This makes it viable for us to establish each user’s
normal profile. This assumption is reasonable given most users’
regular daily lives. Actually, all research on intrusion detection
is based on two assumptions, namely 1) the subject activity is
observable via some system auditing mechanisms and 2) the
normal and malicious activities should demonstrate distinct
behavior. Therefore, it is possible to reason about the evidence
in the data to determine whether the system is currently under
attack. If a user has totally random behaviors, for example, the
movement of a taxi driver, it will be very difficult, if not im-
possible, to create his normal movement profile. Our mobility-
based detection algorithm alone is not suitable for such kind of
users. Nevertheless, our method is automatically user selective,

Fig. 1. Example cellular network and its graph model. (a) Example of cellular
network with cells. (b) Graph model of the cellular network.

because the optional warning service mentioned in the previous
section will tend to give many false warning messages to this
type of users and force them to unsubscribe such a service.

V. MODEL DESCRIPTION

A. Threat Model

The complex cellular mobile network system could incur
software errors and design errors. This could make many at-
tacks possible. One example is cell phone cloning [1]: The
mobile phone card of an authenticate user A is cloned by some
attacker B, which enables B to use the cloned phone card to
make fraudulent telephone calls. If cell phone cloning happens,
the bills for the calls will go to the legitimate subscriber. In
addition, the masquerader could fake the international mobile
equipment identifier (IMEI) and the subscriber identity module
(SIM) card to get the service illegally. Subscription fraud [1]
could also enable the intruder to subscribe the service using the
authentic user’s name.

All these enable the necessity of a fraud detection system
that can complement existing intrusion prevention systems for
cellular mobile networks. By comparing the different behaviors
demonstrated by the authentic user and the attacker, the system
can detect the potential misbehavior.

B. Network Model

Most of the previous work on wireless cellular networks uses
structured graph network topology models, such as hexagonal
or square cell configurations. However, these models may not
accurately represent a cellular network in practice, where the
cell shape and size may vary depending on the antenna radiation
pattern and propagation environment. In wireless cellular net-
works, each cell usually has a base station to serve it. Therefore,
in our system, the wireless cellular network is modeled as a
generalized graph G = (V,E). The vertex set V represents all
the base stations. If two cells are adjacent to each other, there is
an edge between their two vertices.

An example of the model is illustrated in Fig. 1(a) and (b). In
this example, the vertex set is V = {a, b, c, d, e, f, g, h, i}, and
the edge set is E = {(a, b), (b, c), . . . (f, i)}.

C. Mobility Model

The random walk model has been widely used in the lit-
erature, in which a mobile user will move to any one of the
neighboring cells with equal probability after leaving a cell.
This may not be realistic in practice, because mobile users nor-
mally travel with a destination in mind. Therefore, we use the
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Fig. 2. LZ-based anomaly detection.

mth-order Markov model in this paper. In such a model, the mo-
bility of a user can be represented by a sequence of characters,
C1, C2, C3, . . . , Ci, . . ., where Ci denotes the identity of the
cell visited by the mobile. Because the future locations of the
mobile are likely to be correlated with its movement history,
the sequence of characters C1, C2, C3, . . . , Ci, . . . is assumed
to be generated by amth-order Markov source, where the states
correspond to the context of the previous m characters. The
probability that the user moves to a particular cell depends on
the location of the current cell and a list of cells recently visited.

VI. MOBILITY-BASED ANOMALY DETECTION SCHEMES

In this section, we present two mobility-based anomaly
detection schemes called LZ-based scheme and Markov-based
scheme, both relying on extraction of the cell list traversed by
each user as the feature value.

In the LZ-based scheme, based on users’ regular itineraries,
a mobility trie is constructed from the accumulative history of
users’ movement patterns. The recent normal profile of a user
is built by applying the exponentially weighted moving average
(EWMA) [11] technique to the mobility trie. In other words,
this modified mobility trie serves as the normal profile of the
user in the recent past and reflects the stationary part of the
user’s regular mobility pattern. Based on this, we use a blending
scheme, which is introduced in Section VI-B2, to calculate the
probability of each user’s activity. Fig. 2 illustrates the LZ-
based scheme.

Note that similar approaches have been used in different
applications such as in [3] to solve the location management
problem, in [4] to solve the call admission control and band-
width reservation problem, and in [13] to evaluate location
predictors with extensive real Wi-Fi mobility data. However, it
is the first time that this approach is used for intrusion detection.
Furthermore, those constructed mobility databases in [3], [4],
and [13] cannot be used directly and effectively because recent
activities of users are not taken into consideration. In this paper,
recent activities of users are taken into consideration and a new
similarity measure, which is introduced in Section VI-B3b, is
derived to provide criteria to evaluate the normalcy of the user’s
itineraries.

The second scheme, which is the Markov-based scheme,
is based on order-o Markov predictors. The Markov-based
approach is one of the most commonly used approaches in

making predictions. We adopt it mainly to compare our LZ-
based approach. For the Markov-based approach, given an
order o, the probability of being the next cell given the previous
o cells is constructed. In other words, the probability of the
future activity can be calculated.

Both the LZ-based and the Markov-based schemes are online
predictors, which means that they examine the history so far,
extract the current context, and predict the next cell location.
Once the next location is known, the history is appended with
one character (standing for one cell), and the predictor updates
its history to prepare for the next prediction.

In this paper, we focus on the detection of misbehaviors
utilizing users’ mobility patterns. It is possible that after an
intruder successfully “fakes” the authentic user’s mobile phone,
he may keep static or semistatic when he makes the phone
calls. Several existing work has been proposed to utilize other
features, such as call residence time [20], to detect this kind
of potential misbehaviors. In this paper, we do not consider
this case, but in further work, we will extend our intrusion
detection system to handle this case so that more intruders may
be identified.

In our LZ-based scheme, we adopt LZ algorithms [7], [21].
In the rest of the paper, when we discuss these algorithms, we
use the word character. When we apply them to cellular mobile
networks, we use the word cell. These two words have the same
meaning in their respective contexts. Similarly, the word string
is used in discussing LZ algorithms, while cell list is used in
cellular mobile networks.

A. Feature Extraction

The first step in intrusion detection is to extract effective
features. Features are security-related measures that could be
used to construct suitable detection algorithms. Effective fea-
tures must be selected to reflect the subject activities. In our
environment, we build the normal profiles of mobile users
with regular movement patterns in cellular mobile networks.
Under the assumption that each user will have his own favorite
itineraries, the cell list traversed by each user is an ideal
candidate feature for our usage. It is relatively stable, and the
resulting alphabet, i.e., different cells, is small. To be specific,
we denote each cell as a character. Therefore, a string could
represent the path taken by a user. This string (or cell list) will
feed into our model to construct the mobility trie or the fixed-
order Markov model.

B. LZ-Based Intrusion Detection

1) Optimal Data Compression: Data compression is the
encoding of data to minimize its representation. Some of the
most common lossless compression algorithms used in practice
are dictionary-based schemes, where a dictionary D = (M,C)
is a finite set of phrases M and a function C that maps M
onto a set of codes. In practice, when no a priori knowledge
of the source characteristics is available, the problem of data
compression becomes considerably complicated. Therefore, we
often resort to universal coding schemes whereby the coding
process is interlaced with a learning process for the varying
source characteristics.
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Fig. 3. LZ78 algorithm (+ means concatenation).

The family of LZ algorithms belongs to dictionary-based text
compression and encode techniques [8]. They are based on a
popular incremental parsing algorithm by Ziv and Lempel [7],
[21] and have been widely used in data compression. Since its
invention, many variations have been developed, and LZ78 is
the most popular one.

The original LZ78 [7] is a word-based data compression
algorithm. It parses the input string S of size n in a greedy
manner into distinct substrings x1, x2, . . . , xm with the follow-
ing property: For j > 1, there exists a number i < j that makes
xj equal to xi concatenated by c, where c is one character in
the alphabet. This is the so-called prefix property [8]. In the
parsing process, if a phrase is the longest matching phrase seen
previously concatenated by one character, the phrase, which
is called a new phrase, is added to the dictionary. Substring
xj is encoded by the value i, using �lg(j − 1)� bits, which
is followed by the ASCII encoding of the last character of
xj , using �lgα� bits, where α is the size of the input string’s
alphabet. Here, the base of the logarithm is 2. Word-based LZ78
algorithm is illustrated in Fig. 3.

The Ziv–Lempel algorithm can be converted from a word-
based method to a character-based algorithm by building a
probabilistic model that feeds probability information to an
arithmetic coder [12], which encodes a sequence of probability
of p using lg(1/p) = − lg p bits.

LZ78 is both theoretically optimal and good in practice.
When the input text is generated by a stationary and ergodic
source, LZ78 algorithms enjoy the property of being asymptot-
ically optimal as the input size increases. That is, it codes an
indefinitely long string in the minimum size dictated by the en-
tropy of the source. See Section VI-B4 for a proof. Being good
in practice means that searching of LZ78 can be implemented
efficiently by inserting each phrase in a trie data structure.

A trie is suitable to store the parsed phrases and is a multiway
tree with any path from the root to a unique node forming a
string. In a trie, only the unique prefix of each string is stored
because the suffix can be determined by searching the string.
A longest match is found by following down the tree until no
match is found, or the path ends at a leaf.

Here is an example of how to parse a string using LZ78
algorithm and construct a trie. Suppose the alphabet A is
(a, b, c), and one possible string S over this alphabet is

Fig. 4. Example of mobility trie and example of building mobility trie.
(a) Example mobility trie. (b) When (a) is parsed. (c) When (a)(ab) is parsed.
(d) When (a)(ab)(b) is parsed.

aabbabcccabaaba . . .. Each element of the alphabet A could
be one possible cell that the user visits. S could be one
possible cell list traversed by this user. Each substring in the
parse is encoded as a pointer followed by an ASCII char-
acter. Based on the greedy parsing manner, which is shown
in Fig. 3, this string will be parsed into phrases listed as
follows: (a)(ab)(b)(abc)(c)(ca)(ba)(aba) . . .. The match ab of
the eighth substring aba is encoded using �lg 7� bits with a
value of 2, because the match ab is the second substring, and
the last character a is encoded using �lg 3� bits, because the
alphabet size is 3.

In the character-based version of the Ziv–Lempel encoder, a
trie is built when the previous substring ends. A trie at the start
of the ninth substring is shown in Fig. 4. The number associated
with each node indicates the frequency in terms of the number
of times that this node has been parsed in the construction of
the mobility trie.

This trie characterizes the probability model of the string
aabbabcccabaaba . . .. There are four previous substrings be-
ginning with an a, two beginning with a b, and two beginning
with a c. Therefore, the probability of a at the root is 4/8 =
1/2. Similarly, the probability of b at the root is 2/8 = 1/4,
and the probability of c at the root is 2/8 = 1/4. Of the four
substrings that begin with an a, three begins with b. Therefore,
the probability of b from a is 3/4.
2) Probability Calculation: The probability calculation is

based on the prediction by partial matching (PPM) [10] scheme.
Here, we use a context model to predict the next character based
on the previous consecutive characters. Specifically, we use a
mth-order Markov model to model the sequence. That is, we
use the consecutive previous m characters to predict the next
character and calculate its probability. Here, m is the order of
the Markov model. For a first-order (m = 1) Markov model, it
assumes that the next event only depends on the last event in the
past. A high-order (m > 1 order) Markov model assumes that
the next event depends on multiple (m) events in the past.

A tradeoff exists here. If the order m is too small, the
prediction will be poor in the long run because little audit data
will be available to make a decision. However, if the order is
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too large, most contexts will seldom happen, and initially, the
probability estimation will have to solely rely on the resolve
of zero-frequency problems [8]. Based on these considerations,
we take a blending approach, where the predications of several
contexts of different lengths are combined into a single overall
probability. It uses a number of models with different orders to
compute the probabilities, respectively, assign a weight to each
model, and calculate the weighted sum of the probabilities.

Let us denote the maximum order as m. The next character,
denoted by α, is predicted on the basis of previous i characters.
For each character α, let pi(α) be the probability assigned to α
by the finite-context model of order i. Note that when i is zero,
the probability of each character is estimated independently of
other characters. If the weight given to the model of order i
is wi and the blending weight vector is [w0, w1, . . . , wm], the
blended probability p(α) is computed as p(α) =

∑m
i=0 wi ∗

pi(α), where the sum of weights is normalized to 1. The
larger the order, the larger the weight assigned to it, because
context models with larger orders tend to be more accurate and
should weigh more in the current normal profile. The maximum
order m and the weight wi are design parameters and will be
discussed in Section VII.
3) Anomaly Detection Algorithm: We adopt the character-

based LZ78 to deal with the anomaly detection problem, and
a classifier is trained with known “normal” data to distinguish
normal behaviors from anomalous ones.

a) Integration of EWMA into the mobility trie: In anom-
aly detection, each subject (i.e., user in this application) has
a normal profile. For an individual subject, its activity may
change over time. Therefore, it is necessary for the normal
profile to be updated to reflect the recent activities. In our
situation, the normal profile of the user activity should be
dynamic. Generally, activities in the recent past should weigh
more than activities long time ago. Adaptively modifying the
normal profile correspondingly is a suitable mechanism.

Based on these considerations, we integrate EWMA [11]
to the mobility trie. The mobility trie is modified when a
new phrase is formed during the string parsing. When a new
phrase is inserted, we say an event happens. Note that this
event corresponds to a sequence of characters. The insertion
of the new phrase needs to modify the existing frequency of
the mobility trie. We will call the modified frequency EWMA-
based frequency hereafter. EWMA-based frequency measures
how often the corresponding node appears in the recent past.
Note that we do not need to do an extra trie search to modify the
frequency. Instead, it is done at the same time with the update
of the mobility trie to improve efficiency.

The EWMA-based frequency of each node in the mobility
trie is updated as follows:

F (i) = λ ∗ 1 + (1 − λ) ∗ F (i) (1)

where node i is one item of the corresponding events, and

F (i) = λ ∗ 0 + (1 − λ) ∗ F (i) (2)

where node i is not one item of the corresponding events.
Here, F (i) is the EWMA-based frequency value stored in

node i after a new phrase is inserted. For example, in Fig. 4(c),

Fig. 5. Integrating EWMA into the mobility trie construction.

the EWMA-based frequency associated with a is 0.51. The
EWMA-based frequency associated with b is 0.3. Here, λ is a
smoothing constant that determines the decay rate. If a node i is
not observed for continuous k events (one event happens when
a new phrase is inserted), the EWMA-based frequency of node
i will be decayed to (1 − λ)k. In this way, the EWMA-based
frequency of each node measures the intensity of this node over
the recent past.

Continuing the example illustrated in Fig. 4(a), we illustrate
how to integrate EWMA into the construction of the mobility
trie. In this example, we let λ be 0.3. When the first character
a is parsed, the corresponding mobility trie is illustrated in
Fig. 4(c). When ab is parsed, the corresponding mobility trie
is illustrated in Fig. 4(d). When b is parsed, the corresponding
mobility trie is illustrated in Fig. 4(d). As we can see, the
EWMA-based frequency value associated with each node is ex-
ponentially faded. The EWMA-based mobility trie construction
is summarized in Fig. 5.

b) Similarity measure: EWMA-based mobility trie main-
tains the stationary part of each user’s recent activities. Based
on this, we could accurately predict whether the future activities
are normal or not.

Let the sample space be all the possible cells traversed by
a user. Because a user has his favorite routine of activity,
this could lead to a small set of sample space. Let S =
(X1,X2, . . . , Xn) denote the observed activities of the user,
whereXi denotes a cell number. We want to identify whether or
not it is normal based on our constructed mobility trie. We use
a high-order Markov model to compute its blending transition
probabilities.

Given an order o of the Markov model, we define the oth-
order probability of S as follows:

Po =
n−o∑
i=1

P (XI+o|Xi,Xi+1, . . . , Xi+o−1). (3)

When it is an order-0 model (o = 0), the probability of S is
calculated as Po = P0 =

∑n
i=1 P (Xi).

To calculate the probability of the transition (Xi,Xi+1, . . . ,
Xi+o−1) −→ Xi+o in (3), we need to search (Xi,Xi+1, . . . ,
Xi+o−1) from the root. Let F (Xi+o) denote the EWMA-based
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frequency of node Xi+o. If (Xi,Xi+1, . . . , Xi+o−1) is found,
the probability P (Xi+o|Xi,Xi+1, . . . , Xi+o−1) is defined as
follows:

P (Xi+o|Xi,Xi+1, . . . , Xi+o−1) =
F (Xi+o)
F (Xx+o−1)

. (4)

If (Xi,Xi+1, . . . , Xi+o−1) is not found, its probability is
assigned 0.

To calculate P (Xi), we need to compute the sum of the
EWMA-based frequency of the root’s children. P (Xi) is then
defined as F (Xi)/

∑
F (Xroot′s children).

If Xi is not a child of the root, P (Xi) is 0. That is, we only
search from the root to decide the probability of each Xi.

Take the trie illustrated in Fig. 4(d) as an example;
P (a) = 0.357/(0.357 + 0.3) = 0.5434, P (b) = 0.3/(0.357 +
0.3) = 0.4566, and P (b|a) = 0.21/0.357 = 0.5882.

Suppose that the blending weight vector is [w0, w1, . . . , wm],
where wi is the weight value associated with the ith-order
Markov model.

∑m
i=0 wi = 1 and wi ≥ 0 ∀i. The probabil-

ities of string S is defined as P =
∑m

i=0 wi ∗ Pi.
Intuitively, P increases with the increase of S’s length be-

cause more transitions will be considered when S is longer.
Therefore, P is not a good metric. We propose to use the
following metric as our similarity measure similarity(S) =
P/Length(S), where Length(S) is the length of string S.

Based on our definition, the similarity measure could be
normalized by the length of the string and provides good criteria
to evaluate its normalcy. Intuitively, similarity indicates how
good a mobile user follows its routines.

For the input string S, we calculate its similarity(S). When a
user follows one of its favorite itineraries, because this path is
integrated into the mobility trie to construct the normal profile,
many of its transitions, which are illustrated in (4) at different
orders o, will be found in the mobility trie, i.e., normal profile.
Based on our definition, similarity(S) will be a relatively large
value. However, when the mobile is stolen and the intruder takes
an infrequent path, the similarity of this string tends to be a very
small value, because many transitions cannot be found in the
mobility trie.

We introduce a threshold Pthr, which is a design parameter.
When similarity(S) ≥ Pthr, string S is evaluated as normal,
otherwise, string S is identified as anomalous.

Because our mobility trie records the most frequently used
path of a user, it is very sensitive to anomalous paths, even if
they are very short strings. This enables our detection algorithm
to detect the abnormal very quickly—an important quality
for reducing potential damage by a malicious user. At the
same time, our detection algorithm has a very high detection
rate. Furthermore, when a frequently used path is taken, our
detection algorithm can tolerate slight variations from the path
and thus has a small false-positive rate.
4) Theoretical Analysis of LZ-Based Intrusion Detection

Scheme: Because our intrusion detection scheme is derived
from LZ data compression algorithm, we first analyze the
optimality of the word-based LZ algorithm and show that the
character-based LZ algorithm is at least as good as the word-
based scheme. Then, we will show that our intrusion detection

scheme inherits the optimality of these data compression
algorithms.

Given a sequence xn of length n over an alphabet A of α
letters, where xn is the sequence, and n is its length, word-
based LZ data compressor parses it into different phrases,
x1, x2, . . . , xt. Let t(xn) denote the maximal possible number
of distinct phrases. For an information lossless (IL) data com-
pressor C (a class of data compression algorithms that allows
the original data to be reconstructed exactly from the com-
pressed data), the compression ratio ρC(xn) can be calculated
as follows:

ρC(xn) = |C(xn)| /n lg(α) (5)

where the base of the logarithm is 2.
Here, |C(xn)| denotes the length (in bits) of the output that

C produces on xn. n lg(α) is the entropy of xn. Because,
ideally, the length of a message after it is encoded should be
equal to its entropy, (5) represents the compression ratio of the
compressor C.

Let ρσ(xn) denote the best compression ratio attainable for
xn by any IL compressor of σ states. Sequence xn is parsed
into different phases: xn = x1, x2, . . . , xt. The maximum pos-
sible number of distince phrases is t(xn). Define q(xn) =
(t(xn) lg(t(xn)))/(n lg(α)).

It is shown that [7] ρσ(xn) ≥ q(xn) − δ(σ, n) with limn→∞
δ(σ, n)=0. The quantity q(x) = limn→∞ sup t(xn) lg(t(xn))/
n lg(α), which is measurable on x by parsing it into distinct
phrases, establishes a low bound on the best compression. The
word-based LZ algorithm achieves a compression ratio that is
(asymptotically) equal to q(x). That is, its compression ratio
will continually approach q(x) but never actually reach it. Thus,
the algorithm is universal and asymptotically optimal.

The coding length obtained in the character-based LZ algo-
rithm is shown in [8] to be at least as good as that obtained
using the word-based approach. Therefore, the character-based
LZ algorithm is also universal and asymptotically optimal.

If the false alarm rate is defined as the ratio of the total
number of event false alarms that our scheme incurs over the
total number of alarms, and the expected false alarm rate is
defined as the best possible false alarm rate achievable by any
intrusion detection algorithm that makes its predication based
only on the past history, the following theorem holds.
Theorem 1: If the source is a stationary mth-order Markov

source, the expected value of the false alarm rate of the intrusion
detection scheme derived from the LZ algorithm is within an
additive factor of O(1/

√
n) from the expected false alarm rate

of the source, where n is the length of the source sequence.
For the proof of Theorem 1, please refer to [12]. The same

is true for detection rate. This theorem shows that our intrusion
detection algorithm inherits the asymptotic optimality of the LZ
algorithm after it converges.
5) Implementation Issues: In practice, an important issue is

how to store the mobility information in a trie. A trie is actually
a multiway tree with a path from the root to a unique node
for each string represented in the tree. The fastest approach for
processing is to create an array of pointers for each node in
the trie with a pointer for each character of the input alphabet.
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Although this approach is easy for processing, it wastes mem-
ory space. Another approach is to use a linked list at each
node, with one item for each possible branch. This method uses
memory economically, but the processing is intensive. A trie
can also be implemented as a single hash table with an entry for
each node. For further details, the reader can consult books on
algorithms and data structures.

C. Markov-Based Anomaly Detection

Markov predictors are a very popular family of predictors.
They have been widely used and studied in the literature [13].
Let Xt be the cell visited by the user or the state of the user’s
activity at time t. The order-o Markov predictor assumes that
the location can be predicted from the current context, which
is the sequence of the previous o most recent characters in the
location history (Xt−o+1,Xt−o, . . . , Xt). Under this Markov
model, the transitions represent the possible cell locations that
follow the context.

A Markov chain with order o of only one-step event transi-
tions is a stochastic process with the following assumptions:

P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . , X0 = i0)

=P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . , Xt−o+1 = it−o+1)

P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . , Xt−o+1 = it−o+1)

=P (Xt+1 =j|Xt = io,Xt−1 = io−1, . . . , Xt−o+1 = i1)

≡p{i1,...,io−1,io}→j .

It describes the two important properties of the Markov
Chain [11], which are stated as follows:

1) Equation (6) states that the probability distribution of the
user at time t+ 1 depends on the state at time t, t−
1, . . . , t− o+ 1 and does not depend on the previous
states leading to the states at t, t− 1, . . . , t− o+ 1.

2) Equation (6) states that the state transitions from time
t, t− 1, . . . , t− o+ 1 to t+ 1 is independent of time.

If the system has a finite number of states 1, 2, . . . , s, these
probabilities could be represented in a transition probability
matrix, where each element in the matrix is p{i1,...,io−1,io}→j ,
as follows:




p{1,1,...,1}→1 p{1,1,...,1}→2 . . . p{1,1,...,1}→s

p{1,1,...,2}→1 p{1,1,...,2}→2 . . . p{1,1,...,2}→s

...
...

...
...

p{s,s,...,s}→1 p{s,s,...,s}→2 . . . p{s,s,...,s}→s


 . (6)

p{i1,...,io−1,io}→j could be learned from the observations
of the user’ locations in the past. When o ≥ 1, P (Xt+1 =
j|Xt = io, Xt−1 = io−1, . . . , Xt−o+1 = i1) = N(Lj)/N(L),
where L = {i1, . . . , io−1, io}, N(Lj) denotes the number of
observation pairs of L and j. N(L) denotes the number of
observations of L.

When o is 0, the formula becomes

P (Xt+1 = j) =
N(j)
N

(7)

where N is the total number of observations (i.e., total number
of cells). N(j) is the number of observations of a.

Given this estimation, we can calculate the probability of the
next location given the previous o locations for a specific user.
The larger the probability, the more likely it is normal. We can
then derive a threshold policy and use it to decide whether the
current activity is normal or not.

That is, given a fixed-order value o and an observed ac-
tivity in terms of a cell list Sobserved = (X1,X2, . . . , Xn),
where each Xi denotes a cell number. For o ≥ 1, we
first calculate its o-order transition probabilities as Po =∑n−o

i=1 P (Xi+o = j|Xi = i,Xi+1 = i+ 1, . . . , Xi+o−1 = i+
o− 1)=

∑n−o
i=1 p{i,i+1,...,i+o−1}→j , where p{i,i+1,...,i+o−1}→j

can be retrieved from the probability transition matrix whose
element is obtained using (6). If the transition does not exist
in the transition matrix, we assign P (Xi+o|Xi,Xi+1, . . . ,
Xi+o−1) to 0.

For o = 0, its probability could be calculated as Po =∑n
i=1 P (Xi = j), where P (Xi = j) can be obtained from (7).
Similar to LZ-based mechanism, Po increases with an

increase in S’s length. Therefore, for the Markov-based
prediction, we also define the following similarity metric:
similarity(S) = Po/Length(S), where Length(S) is the length
of string S.

For the input string S, we calculate its similarity(S). If most
transitions can be found, similarity(S) tends to be large. This
indicates that S is more likely to be normal. However, if the
mobile is stolen and an infrequent or new path is taken, the
similarity of the string should be small.

When the mobile is at low mobility, the user usually travels
one or two cells during the call. Given a fixed o, it is highly
possible that the length of the transition (o+ 1) is larger than
the length of the cell. The Markov-based prediction cannot
make a decision under this situation. Therefore, a high-order
Markov-based prediction will become helpless for low mobility
data. We make a random guess when this situation happens. For
example, with a probability of 1/2, this cell list is identified as
normal (abnormal).

For the Markov-based prediction, we introduce a threshold
Pthr_markov. If similarity(S) ≥ Pthr_markov, string S is eval-
uated as normal. Pthr_markov should be tuned by taking into
consideration both false alarm rate and detection rate.

VII. SIMULATION STUDY

We use the C language to simulate mobile users’ activities
at different mobility levels to watch the performance of our
anomaly detection schemes. To the best of our knowledge, there
is no other work that intends to construct anomaly detection
models over users’ mobility data in cellular mobile networks.

A. Data Sets

A generalized graph model is used in our simulation to rep-
resent a cellular network of 40 cells, each having six neighbors
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on the average. The average distance between two base stations
is 1 mi. To avoid the edge effect of the finite network size,
wraparound is applied to the edge cells. Because most mobile
users have favorite routes in reality, in this experiment, each
mobile user has five possible paths in the network. A mobile
user will take these five paths with probabilities of 0.6, 0.2, 0.1,
0.05, and 0.05, respectively. The paths are generated as follows:
1) Select two cells in the graph randomly as the original
and destination cells. 2) Whenever the mobile user leaves the
current cell, it moves to a neighboring cell that is closest to the
destination. Call durations are exponentially distributed with a
mean value of 3 min. With a fixed call duration, the higher the
speed, the longer the cell list. Because mobile users travel with
different speeds, we consider five mobility levels. The speeds
of mobiles are 20, 30, 40, 50, and 60 mi/h in the five cases,
respectively.

Note that the aforementioned mobility data sets are generic
enough for most users. However, it may not be suitable for users
with totally random movement behaviors such as taxi drivers.

For the LZ-based scheme, m = 2. That is, we apply a
blended Markov model with order 0, order 1, and order 2 to
the data sets. The weights for order 0, order 1, and order 2 are
0.1, 0.2, and 0.7, respectively.

For the Markov-based detection method, four schemes are
considered with order 0, order 1, order 2, and order 3, respec-
tively. We set λ to 0.3, a commonly used smoothing constant.

B. Performance Metric

1) False alarm rate: It is measured over normal itineraries.
Suppose that j normal itineraries are measured, and i of
them are identified as abnormal. The false alarm rate is
defined as i/j.

2) Detection rate: It is measured over abnormal itineraries.
Suppose that j abnormal itineraries are measured, and i
of them are detected. The detection rate is defined as i/j.

Because both LZ-based and Markov-based predictors are
online predictors, the number of training sequences has an
impact on the performance of the proposed detection schemes.
Based on this consideration, we measure false alarm rate and
detection rate in the proposed schemes with different numbers
of training sequences. Detailed discussions in this respect are
presented in Section VII-C3.

C. Simulation Results and Analysis

1) False Alarm Rate: Simulation results of the false alarm
rate are illustrated in Fig. 6. First, we observe that the false
alarm rate of the LZ-based scheme is lower than those of
Markov-based schemes with different orders. This is because
the LZ-based prediction uses EWMA to make the current
activities weigh more in the probability calculation and uti-
lizes the blending scheme to calculate the overall probability,
which takes into account predictions with different orders. On
the other hand, fixed-order Markov predictions are used in
the Markov-based detection schemes. Therefore, the anomaly
detection in the LZ-based scheme is more accurate compared
to those of the Markov-based schemes.

Fig. 6. False alarm rate at different mobility levels.

Second, we observe that, generally, the false alarm rate of
all schemes decreases when the mobility level increases. With
the increase of mobility, a user tends to traverse more cells
during a call, and more mobility information about this user
is stored in the database. Therefore, for a normal user with
regular movement patterns, his itinerary will demonstrate more
resemblance to his regular activities. Consequently, the false
positives are reduced.

Third, for Markov-based schemes, their performance in
terms of false alarm rate is not desirable, especially when the
mobility is low. We can see that Markov-based schemes can
have up to 50% false alarm rate when the mobility is low
(for example, 20 mi/h). When the mobility is very low, a user
will traverse only one or at most two cells during a call in
our simulation. This makes it very difficult to identify whether
the mobility is normal or not, especially when a higher order
Markov-based scheme is used. For a very short cell list, it may
not match any context of the Markov model at a given order.
Thus, Markov-based schemes become ineffective in making
correct decisions under these situations. The random guess
mechanism described in Section VI-C could lead to a very
high false alarm rate. When the itinerary is relatively long, the
situation is better. However, it is still prone to relatively high
false-positive rates. This is because the valid paths taken in the
training data may happen with very low probability. Therefore,
even if the similar path is taken again, it is still possible to be
identified as an abnormal path.
2) Detection Rate: Simulation results of the detection rate

are illustrated in Fig. 7. First, we observe that the detection
rate of the LZ-based scheme is higher than those of Markov-
based schemes with different orders. The reason is similar
to that in the false alarm rate case. The LZ-based prediction
utilizes EWMA and blending schemes to calculate the overall
probability with different orders. This makes it more accurate
compared to the Markov-based schemes with fixed orders.

Second, we observe that, generally, the detection rate of
all schemes increases with the increase of the mobility level.
Again, the reason is similar to that in the false alarm rate
case. With the increase of mobility, the user tends to traverse
more cells during a call. Therefore, for a masquerader, his
itinerary tends to deviate significantly from the normal profile.
In this way, the detection rate is improved with the increase of
mobility.
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Fig. 7. Detection rate at different mobility levels.

Fig. 8. False alarm rate versus the number of training sequences.

Third, for the Markov-based schemes, their performance in
terms of detection rate is not desirable, especially when the
mobility is low. Simulation results show that when the mobility
is low (for example, 20 mi/h), the Markov-based schemes can
only achieve 50% detection rate. For a very short cell list, it
may not match any context of a Markov model at a given order.
Thus, Markov-based schemes become ineffective in detection
under these situations. In the simulation, we cannot achieve
100% detection rate in any case, because when the itinerary
is relatively long, it is possible that part of the intruder’s path
overlaps with some normal paths. Therefore, it is still possible
to miss the detection of these kinds of itineraries.
3) Effects of the Number of Training Sequences: We have

demonstrated that the LZ-based detection scheme performs
better than the Markov-based detection scheme. Therefore, in
this section, we use the LZ-based detection scheme to illustrate
the impact of the number of training sequences on the detection
performance in terms of false alarm rate and detection rate. This
could also help us to answer how long the user profile could be
applied after online training. That is, when the false alarm rate
and the detection rate become relatively flat, the user profile is
ready to be used.

Fig. 8 illustrates the false alarm rate using different numbers
of training sequences. First, we observe that, at all mobility
levels, with the increase of the number of training sequences,
the false alarm rate decreases. This demonstrates the impact of
the number of training sequences on the detection performance
in terms of false alarm rate. With the increase of the number

Fig. 9. Detection rate versus the number of training sequences.

of training sequences, the constructed mobility trie can char-
acterize the normal profile better and predict the user’s activity
more accurately. Therefore, it could result in a lower false alarm
rate. We also observe that after a large number of training
sequences has been used to construct the model, the false alarm
rate becomes relatively stable, i.e., it does not change much with
the increase of the number of training sequences.

Second, it can be observed that the lower the mobility, the
slower the false alarm rate decreases with the increase of the
number of training sequences. When the mobility is low, the cell
list is shorter. Therefore, the portion of “randomness” will
play an important role in making the final decisions. Under
this situation, the number of training sequences only has little
impact. Therefore, for low mobility levels, the false alarm rate
decreases slower with the increase of the number of training
sequences.

Fig. 9 shows the detection rate using different numbers of
training sequences. First, we observe that, at high mobility
levels, with the increase of the number of training sequences,
the detection rate keeps roughly the same value. This is because
for a user activity that is abnormal, it will keep abnormal no
matter how many training sequences are utilized to construct
the model. Therefore, the number of training sequences has
little impact on the detection rate.

Second, we see that, at low mobility levels, the detection rate
increases with the increase of the number of training sequences.
The reason is similar to the one stated earlier: When the
mobility is low, the cell list is shorter. Nevertheless, when more
training data are integrated into the system, it becomes more
accurate to make final decisions. Therefore, for low mobility
levels, its detection rate increases with the increase of the
number of training sequences.

VIII. CONCLUSION AND FUTURE WORK

This paper presented two approaches to construct an end
user’s mobility profile for anomaly intrusion detection in wire-
less cellular networks. In the first method, based on optimal
data compression techniques, each user’s itinerary was modeled
as an mth-order Markov source, and EWMA was applied
to make the normal profile up-to-date. An intrusion detec-
tion scheme was then developed to detect potential internal
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attackers—masqueraders. In the second method, we used a
fixed-order Markov-based detection scheme.

We performed a simulation study to compare the per-
formance of different detection schemes. Simulation results
demonstrated that the LZ-based detection scheme can achieve
more desirable performance in terms of false alarm rate and
detection rate. Markov-based detection schemes, especially
those with higher orders, are not very effective in anomaly
intrusion detection in cellular mobile networks due to relatively
lower user mobility in terms of the number of cells traversed
compared to other wireless networks, such as the wireless local
area network (WLAN). This observation differs significantly
from the phenomenon described in [13].

In this paper, we have only considered mobility patterns as
feature values, which may not be accurate for some particular
types of users such as taxi drivers. In our future work, more fea-
tures such as call history and activities will be accommodated
into the system to make it more suitable to all users.
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