
LiSP: A Lightweight Security Protocol for
Wireless Sensor Networks

TAEJOON PARK and KANG G. SHIN
The University of Michigan

Small low-cost sensor devices with limited resources are being used widely to build a self-organizing
wireless network for various applications, such as situation monitoring and asset surveillance.
Making such a sensor network secure is crucial to their intended applications, yet challenging due
to the severe resource constraints in each sensor device. We present a lightweight security protocol
(LiSP) that makes a tradeoff between security and resource consumption via efficient rekeying.
The heart of the protocol is the novel rekeying mechanism that offers (1) efficient key broadcast
without requiring retransmission/ACKs, (2) authentication for each key-disclosure without incur-
ring additional overhead, (3) the ability of detecting/recovering lost keys, (4) seamless key refresh-
ment without disrupting ongoing data encryption/decryption, and (5) robustness to inter-node clock
skews. Furthermore, these benefits are preserved in conventional contention-based medium access
control protocols that do not support reliable broadcast. Our performance evaluation shows that
LiSP reduces resource consumption significantly, while requiring only three hash computations,
on average, and a storage space for eight keys.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and Protection; K.6.m [Management of Computing and Information Systems]:
Miscellaneous—Security

General Terms: Design, Security

Additional Key Words and Phrases: Authentication, key management, lightweight security, sensor
networks

1. INTRODUCTION

Sensor networks are usually built with a large number of small, inexpen-
sive, battery-powered devices that have limited residual energy, computation,
memory, and communication capacities. Such sensor networks can be used for
various applications typified by the well-known pursuit-evasion game (PEG)
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[Hespanha et al. 1999; Vidal et al. 2002], in which a group of pursuers attempts
to track and capture moving evaders. A sensor network is integrated into the
PEG to augment the “sensibility” of pursuers.

Sensor networks must meet several operational challenges, such as energy
efficiency in terms of maximizing the lifetime of sensor networks; scalability to a
large number (thousands to millions) of nodes; survivability in certain environ-
ments where sensors are subject to compromise, capture, and manipulation by
adversaries; support for dynamic addition/removal of sensors;1 and robustness
to spontaneous interferences, collisions, and packet losses. Moreover, they are
vulnerable to serious security attacks. Unlike the wired counterparts, sensor
networks do not require any physical contact for communication, and hence, an
adversary with a simple radio receiver/transmitter can easily eavesdrop conver-
sations, inject/modify packets, and mount denial-of-service (DoS) attacks. These
challenges, along with the severe resource constraints in each sensor node, limit
both the security and the performance of a sensor network. Confidentiality, data
integrity, and authentication services must be supported to prevent adversaries
from compromising the sensor network, but advanced cryptography cannot be
used by resource-poor sensor nodes. It is, therefore, important to make a good
tradeoff between the levels of security and resource consumption.

A sensor device usually cannot use nontrivial cryptography like public-key
algorithms due mainly to its insufficient resources. The symmetric-key ciphers
and cryptographic hash functions, which are orders-of-magnitude cheaper and
faster, would be a better choice for sensor nodes. Moreover, data packets in sen-
sor networks are generally small. A desirable property in this environment is
that the size of the ciphertext should be the same as that of the plaintext. These
requirements suggest the use of a stream cipher as the underlying encryption
engine. For example, SPINS [Perrig et al. 2001] realizes the stream cipher by
running the RC5 block cipher in the counter mode, Burnside et al. [2002] use
RC5 in the output feedback mode, and the IEEE 802.11 Wired Equivalent Pri-
vacy (WEP) [IEEE 1997] uses the RC4 stream cipher.

However, it is well known that stream ciphers are vulnerable to keystream2

reuse. This weakness allows attacks against stream ciphers that succeed irre-
spective of the symmetric-key size. For example, WEP prefixes each encrypted
packet with a per-packet IV, but, due to the limited IV space (24 bits), it is
vulnerable to a number of practical attacks as reported in Borisov et al. [2001],
Walker [2000], and McGrew and Fluhrer [2000]. To remove the keystream-
reuse problem, SPINS forces both communicating parties to maintain the IV
separately, instead of including IV in data packets, while updating the key af-
ter the IV wraps around. Unfortunately, this design choice creates the following
new problems:

— Lossy wireless links may cause IVs loss of synchronization, and in such a
case, communication will remain disabled until IVs are resynchronized.

1This is necessary to expand the network coverage area or replace faulty/subverted nodes.
2The keystream is generated as a function of the symmetric key and the initialization vector (IV),
and is XORed with the plaintext to produce the ciphertext.
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— It cannot protect the network against replay attacks and incurs an additional
overhead of maintaining IV states of the other sensor devices.

— The rekeying overhead increases rapidly as the network size grows.

Problems with the schemes in WEP and SPINS emanate from the fact that they
solely control IVs without refreshing the key, or use implicit IVs and triggered
rekeying. It is, therefore, important to refresh the symmetric key as often as
needed while keeping small-length IVs, not only to remove keystream collisions
but also to improve performance.

The security for sensor networks hinges on a group communication model:
authorized sensors in the network share a symmetric key that is used to encrypt
communication messages; new sensors join the network after their deployment;
and the compromised sensors are forced to leave the network. In this model, for-
ward and backward confidentiality3 [Wallner et al. 1999] should be provided via
rekeying, in which the shared key is changed/redistributed whenever a sensor
joins or leaves the network. For its proper operation, rekeying must be protected
by the following mechanisms. First, the master secret, used for securing the
shared-key updates, must be predeployed to each sensor using tamper-proofing
techniques [Carman et al. 2000] or a ring of keys [Eschenauer and Gilgor 2002].
Second, intrusion detection systems (IDSs) [Kumar and Spafford 1995; Ilgun
et al. 1995; Bass 2000; Zhang and Lee 2000; Zhang et al. 2001] must be used as
sensors are likely to be compromised because (i) use of tamper-proofing tech-
niques is limited by the low-cost requirement for sensor devices, and (ii) only
computationally inexpensive cryptography can be employed.

For scalability, the entire network is typically divided into multiple groups,
each with its own symmetric key [Mittra 1997] or with a key shared among all
groups [Setia et al. 2000]. Carman et al. [2000] conducted a broad survey of
group-determination algorithms and the associated group rekeying protocols.
Group rekeying protocols can be either reactive or periodic. The reactive proto-
col [Harney and Muchenhirn 1997; Wallner et al. 1999; Wong et al. 1998; Chang
et al. 1999] renews the key upon a member’s join/leave. This approach, however,
does not attempt to reduce the frequency of rekeying that causes high rekey-
ing overhead in large and/or dynamic groups. By contrast, the periodic protocol
[Setia et al. 2000, 2002; Li et al. 2001] refreshes keys periodically to decouple the
frequency of rekeying from the group size and dynamics, and hence, scales well
to large groups. Yang et al. [2001] have shown that periodic rekeying reduces
both processing and communication overheads of the key-server (KS)4 and im-
proves the scalability and performance over the reactive rekeying. Moreover,
severe resource constraints in each sensor node and the requirement for a large
number of sensors in the network make it necessary to limit the frequency of
rekeying so as to reduce its overhead. In such a case, periodic rekeying might
be preferable to reactive protocols [Setia et al. 2000; Basagni et al. 2001].

3New members joining the network should not be able to access the packets transmitted before their
joining and those having left the network should not be able to access the packets communicated
after their departure.
4The KS is responsible for distributing a new key within its group.
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The rekeying must ensure reliable distribution of keys. The Time Division
Multiple Access (TDMA) protocol can provide a reliability service to the key-
management layer. However, Ye et al. [2002] argued that TDMA is unsuitable
for sensor networks as it is difficult to manage dynamic groups and control
inter-group communications and interferences. Most protocols used/proposed
for sensor networks [Singh and Raghavendra 1998; Woo and Culler 2001; Ye
et al. 2002] are essentially the Carrier Sense Multiple Access (CSMA) proto-
col. To achieve reliable key distribution in the CSMA protocol, one may perform
multiple unicasts with handshakes (RTS/CTS/Data/ACK), but this suffers from
high latency and excessive control traffic. Broadcasting keys eliminates these
problems, but, since the CSMA protocol does not provide any means of recov-
ering lost frames, the broadcast reliability is degraded due to the increased
probability of frame losses as a result of frame collisions. Several protocols
[Pagani and Rossi 1997; Tang and Gerla 2000; Tourrilhes 1998; Sun et al. 2002]
have been proposed to improve the CSMA’s broadcast reliability. Unfortunately,
they still introduce significant control traffic, without guaranteeing 100% relia-
bility. We, therefore, need a key-management protocol that reliably coordinates
the key-distribution service.

In this paper, we propose a lightweight security protocol (LiSP) that is
equipped with key renewability and makes a tradeoff between security and
resource consumption. The heart of LiSP is a novel rekeying protocol that (1)
periodically renews the shared key to solve the keystream-reuse problem and
maximize scalability/energy efficiency. and (2) supports reliable key distribu-
tion. The rekeying protocol has the following salient features:

— efficient key broadcasting without retransmission/ACKs;
— implicit authentication for new keys without incurring additional overhead;
— ability of detecting/recovering lost keys;
— seamless key refreshment without disrupting ongoing data transmission;

and
— robustness to clock skews among nodes.

These features make LiSP very flexible in that it only requires very loose time
synchronization, and does not stress the underlying network/link layers, that is,
not requiring reliable broadcast at the link layer. LiSP is also energy efficient
and robust to DoS attacks, since it does not require any retransmissions or
other control packets. To our best knowledge, there is no previous work that
effectively handles all of these issues.

We propose a joint authentication and recovery algorithm for rekeying,
in which the KS periodically broadcasts a new key well before its use for
encryption/decryption, and a client node first authenticates the received key
and then recovers all previously missed keys, if any. The proposed algorithm
relies on the unique properties of the cryptographic one-way function. It is
efficient in that each node buffers keys only, as compared to TESLA [Perrig
et al. 2001], which buffers all the received data packets until the node receives
an error-free key. LiSP also uses double buffering of keys for their seamless,
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Fig. 1. The PEG framework consisting of two wireless networks, one for sensors and the other for
pursuers.

robust refreshment: while the key in one slot is being used for data encryp-
tion/decryption, the next key will be written to the other slot.

The rest of the paper is organized as follows. Section 2 presents a system
architecture for PEG-like applications. Section 3 summarizes possible security
attacks and an intrusion model, while Section 4 describes the details of LiSP.
Section 5 presents the results of our performance evaluation. Finally, the paper
concludes with Section 6.

2. SYSTEM ARCHITECTURE

Prototypical applications of a sensor network include: (i) PEG [Hespanha et al.
1999; Vidal et al. 2002], in which a group of pursuers track and capture moving
evaders based on the information collected and processed by the sensor network;
(ii) a common reference grid, in which the sensor network collects and maintains
information for a discovery service or a distributed directory service to locate
critical services; (iii) a shooter localization system [Duckworth et al. 1996], in
which sensors detect the acoustic shock wave of a bullet as it travels through
the air; and (iv) habitat and environmental monitoring systems [Mainwaring
et al. 2002], in which sensors are deployed to collect data without incurring
disturbance effects (e.g., by human).

PEG-like applications are realized on two wireless networks, one for con-
necting sensors and the other for connecting pursuers, as shown in Figure 1.
The sensor network typically covers a wide area, requiring thousands or even
millions of sensors, each of which is capable of detecting (part of) an object
moving nearby. On top of the sensor network, a separate wireless network of
pursuers is formed, for example, to build a terrain map and cooperate with
one another to capture/kill evaders based on the information collected from
sensors.

Usually, there exists significant heterogeneity between sensors and pursuers.
Sensors range from Motes [Hill et al. 2000; Crossbow 2003] with an 8-bit CPU
running at 4 MHz, 128 KB of program memory, 4 KB of RAM, 512 KB of serial
flash memory and two AA batteries, to those with more powerful CPUs like
MIPS R4400 and larger memory capacity. Sensors in this range usually have
limited battery energy, computation, memory, and communication capabilities.
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In contrast, pursuers, such as unmanned aerial vehicles and unmanned ground
vehicles, do not have such resource limitations. Each pursuer is equipped with
the same radio receiver/transmitter as sensors, as well as a more powerful RF
interface to communicate with other pursuers.

The sensor network includes (i) data-collection nodes, which collect/store
sensed data, and process and make it available to pursuers, and/or (ii) con-
trol nodes, which coordinate (multihop) routing among sensors and broadcast
commands to sensors. Clusters in this two-tier routing system rely on control
nodes, called cluster-heads, for managing cluster topology, routing information,
pursuers’ locations, and so on. Clusters may be statically formed according to
geographic grids [Li et al. 2000]. Sensing groups, which are formed around
evaders to aggregate/disseminate sensor data about evaders, dynamically elect
data-collection nodes, as in Estrin et al. [1999], Madden et al. [2002], Ye et al.
[2002], and Bonnet et al. [2001]. In light of the group communication model,
we will henceforth refer to each cluster or sensing group as a group, and each
control or data-collection node as a group-head (GH).

Figure 1 illustrates the role of GHs in the sensor network: (i) each GH collects
data about evaders, and (ii) all GHs cooperate in sending/receiving data to/from
the pursuer (intergroup communication) as well as communicating with sensors
within their own group (intragroup communication). So, the communication
between a sensor and the pursuer is made in three steps: (1) a source s sends
data to its GH h1; (2) h1 relays the data to another GH h2 that knows the location
of the receiver d ; and finally, (3) h2 forwards the data to d .

There exist two types of intragroup communication, one from GH to sensors
and the other from a sensor to GH. GH either unicasts specific commands to a
sensor or broadcasts control packets, such as beacons, queries, and requests, to
all of its sensors, while each sensor unicasts data to its GH. Since sensors are
assumed immobile, it suffices for them to use a table-driven routing protocol,
under which each GH acts as a coordinator, maintaining the routing topology,
and each sensor within a cluster stores only one entry, the next-hop information,
in its routing table to reach its GH.

3. SECURITY ATTACKS

Adversaries can be classified as passive or active: passive attackers only eaves-
drop conversations on the network, while active attackers inject packets into the
network in addition to eavesdropping. Since sensor networks may be deployed
in a hostile environment, we should assume more powerful adversaries. An ad-
versary’s attempt to disrupt, subvert, or destroy the sensor network, belongs
to a broad category of DoS attack that diminishes or eliminates the network’s
ability to perform its normal function. Wood and Stankovic [2002] summarized
plausible tools for DoS attacks as follows:

— jamming that interferes with the operating radio frequencies;
— collisions that are induced on ongoing packet transmissions;
— exhaustion that forces the link layer to repeat packet retransmission; and
— vulnerabilities of existing protocols.
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A captured sensor may be scrutinized and modified by the adversary. The
tamper-resistance technology [Carman et al. 2000; Anderson and Kuhn 1996] is
widely used as a countermeasure for this. But, as stated in Anderson and Kuhn
[1996], tamper-resistant hardware is not always absolutely safe and there exist
various tampering schemes, such as microprobing, glitch attacks, and cipher
instruction search attacks.

Possible security attacks we assume are very general: an attacker can eaves-
drop, forge, modify, and delete any information. It can also mount offline dictio-
nary attacks for future break-ins, man-in-the-middle attacks, replay attacks,
resource-consumption (or DoS) attacks. We also assume that an attacker can
take over any sensor node within the network, because perfect tamper-proofing
is too expensive to be built into low-cost sensor devices. It is, therefore, reason-
able to assume that any secret can be securely preserved from attackers only
for a certain period of time.

Compromising a single node means that all nodes within its communication
range can be blocked/denied from receiving and/or sending/relaying any infor-
mation. So, we must minimize the effects of a compromised node on the rest
of the network, that is, the single compromised node should not be allowed to
enable subversion of the entire network.

4. LIGHTWEIGHT SECURITY PROTOCOL

LiSP aims to offer a lightweight security solution for a large-scale network
of resource-limited sensor devices. For scalability to a large number of sen-
sors, LiSP decomposes the entire network into clusters and/or sensing groups
and selects a GH for each of them, as described in Section 2.5 LiSP ad-
dresses the following two main questions associated with the device’s resource
constraints:

Q1. How to combine security with other services, such as routing, sensor
data aggregation/dissemination, and location services?

Q2. How to make a tradeoff between security and resource consumption?

To address the first question, LiSP introduces the notion of KS, which controls
the security of a group. For a sensor network that consists of multiple groups,
LiSP designates GHs as KSs. The wireless networks for connecting pursuers
would also be partitioned into groups, each of which elects the KS among its
members. So, without loss of generality, we can assume the existence of one KS
per group. LiSP also uses a KS for the network (KSN) that coordinates KSs in
rekeying for intergroup communications.

For the security tradeoff, LiSP (i) uses a stream cipher for its cheap and fast
processing, and (ii) supports periodic renewal of keys with inexpensive crypto-
graphic hash algorithms. It is reliable, and works well with the conventional
CSMA protocols that do not support reliable broadcast. Moreover, LiSP requires
only very loose time synchronization among group members.

5Each group (cluster) will be reasonably sized. Accordingly, the larger the network gets, the more
groups (clusters) LiSP creates.
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Fig. 2. The key hierarchy for LiSP.

LiSP achieves the following goals in protecting security-critical information
from attackers.

— Confidentiality: keeps data from being eavesdropped, and ensures that an
attacker will not acquire any information about the plaintext, even if it sees
multiple encrypted versions of the same plaintext.

— Data integrity: prevents tampering with the transmitted data.
— Access control: protects and controls access to the network.
— Availability: protects the network from interruptions in service.
— Key renewability and revocability: protects the network from compromised

nodes, if any.

In this section, we detail the architecture of LiSP, the rekeying proto-
col, the message encryption/authentication layer, and describe algorithms and
tradeoffs.

4.1 The LiSP Architecture

For key renewability, LiSP implements a key hierarchy as shown in Figure 2.
This hierarchy defines two keys: (i) a temporal key (TK) for encrypting/
decrypting data packets; and (ii) a sensor-specific master key (MK) that is used
by KS to unicast TK to an individual sensor. Under the symmetric-key cryp-
tography, a TK should be shared by all group members (for intragroup com-
munications) and refreshed periodically to ensure forward and backward confi-
dentiality as well as elimination of keystream collisions. Using its group-based
architecture, LiSP achieves scalable and distributed rekeying, since member-
ship changes6 in a group do not affect the other groups in the network.

The KS executes entity authentication7 with a new sensor joining the group,
and if successful, grants a membership to the sensor by storing the sensor’s MK
in its database and then transmitting the current TK. MKs for sensors will be
stored in tamper-resistant hardware, but we assume limited tamper-resistance
built in low-cost sensor devices. This means that an attacker may access MKs
of the subverted sensors.

6The group membership changes if a new sensor joins the group or if an existing member leaves
the group. The latter event occurs when the member is compromised.
7The entity authentication between two nodes verifies each other’s identity/authenticity. It typically
relies on trusted third parties such as distributed certificate authorities [Shamir 1979; Zhou and
Haas 1998; Kong et al. 2001; Zhou et al. 2002].
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Fig. 3. The LiSP architecture.

As shown in Figures 2 and 3, there are two main components associated
with the key hierarchy: intrusion detection, which probes/monitors network
activities to uncover compromised nodes, and TK management, which protects
network traffic from attacks by rekeying TK periodically. Since it is almost
impossible to safeguard the network against all possible attacks, it is impor-
tant to introduce a second line of defense, that is, LiSP uses an IDS [Kumar
and Spafford 1995; Ilgun et al. 1995; Bass 2000; Zhang and Lee 2000; Zhang
et al. 2001] to probe/monitor for anomalies in the network. Since each GH that
serves as KS, is a traffic concentration point of the corresponding group, it will
be equipped with an IDS to monitor the ongoing traffic. However, in sensor
networks, all useful information is local at some point of time, to the group(s)
near the evader. Due to this distinct feature, a single point of failure at the
KS might cripple the entire network. To avoid this problem, the IDS is orga-
nized hierarchically: each KS is in charge of monitoring sensors within a group,
while a more powerful IDS running, for example, on pursuers, watch out for
possible KS compromises. In our framework depicted in Figure 1, both KSs and
pursuers are more capable and have more resources than usual sensors, and
hence, the IDSs resource consumption, unless it is excessive, should not be an
issue.

Once a compromised sensor is identified by the KS, the TK manager disables
the sensor and renews the TK in the next update cycle. If a KS is found to
have been compromised, LiSP either (i) elects a new KS for the group, or (ii)
redistributes member sensors to the neighboring groups.

The TK manager, running on the KS, renews TK for the group. Due to
the severe resource limitation in each sensor device, TK rekeying should be
lightweight and conserve resources as much as possible. Our approach to meet-
ing this requirement is to renew TK periodically using (not necessarily reli-
able) broadcast, instead of using triggered and unicast/retransmission-based
renewal. Periodic rekeying of the TK is crucial to counter keystream-reuse at-
tacks and improve scalability/energy efficiency of group rekeying. The proposed
TK management has the following salient properties.
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— efficient TK broadcasting without relying on retransmissions/ACKs;
— implicit authentication of TKs;
— fault tolerance by recovering lost TKs;
— seamless TK rekeying without disrupting ongoing data transmissions; and
— robustness to internode clock skews.

These properties of LiSP have yielded high-performance TK rekeying: it mini-
mizes the number of control packets generated in the network and reduces the
size of each control packet. The TK management will be detailed next.

4.2 TK Management

The challenges in TK management are how to enable all nodes to (i) acquire a
new TK efficiently, securely, and reliably, and (ii) switch to the new TK without
disrupting the ongoing data transmission. Note that, with the symmetric-key
ciphers, it is difficult to refresh TK seamlessly, as it requires the same key to
be possessed by both communicating parties. To address the first challenge,
TK distribution must be secure and fault tolerant: the “secure” part relates
to confidentiality and authenticity of TKs, and the “fault tolerant” part means
the ability to restore lost TKs. The second challenge requires seamlessness and
weak internode time synchronization.

The proposed TK management meets the above challenges/requirements
while incurring low overhead. The main ideas of the proposed protocol are to:
(1) generate a sequence of TKs by utilizing the cryptographic one-way function,
similarly to that of S/KEY [Haller 1995]; (2) distribute each TK well before it
is used for encryption/decryption; (3) perform TK buffering in all sensors in
the group; and (4) verify the authenticity of the received TK and detect/recover
missing TKs using the other stored TKs.

To ensure secure TK distribution, the KS initiates TK management by en-
crypting, authenticating, and transmitting a control packet that includes the
length t of the key-buffer (for TKs), an initial TK, and the TK-refreshment
interval, Trefresh.8 Then, once every Trefresh, the KS encrypts and broadcasts a
control packet that contains a future TK. Note that the latter does not include
a message authentication code (MAC) for TK. Thanks to the cryptographic
one-way property of TK sequence, receivers can determine whether or not the
received TK belongs to the same key sequence as those stored in the buffer, thus
verifying the TKs authenticity. This procedure, called implicit authentication,
reduces the size of control packet significantly, because the size of MAC (e.g.,
128-bit in MD4) is as large as that of fields to be protected.

TK refreshment must tolerate TK losses caused by a noisy channel. A
retransmission-based reliability mechanism cannot be used because it will gen-
erate too many control packets and/or result in very high latencies. It would
be more efficient and more desirable if nodes could automatically restore TKs,

8The larger t, the more fault-tolerant LiSP becomes at the expense of larger key-buffer space.
Trefresh is a design parameter for making a tradeoff: the shorter Trefresh, the higher overhead and
the smaller rekeying latency. Trefresh should be shorter than the interval that ensures collision-free
keystreams at sensors’ maximum packet-generation rate.
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rather than asking the KS for retransmission of the lost TKs. Thus, we need a
lightweight mechanism to detect the loss of TKs and restore up to t lost TKs
in a cryptographically secure way. LiSP achieves this based on a one-way key
sequence.

The last two requirements—seamlessness and weak/loose time
synchronization—are met by equipping each node with two key-slots to
be used concurrently. While the TK in one key-slot is being used for data
encryption, the next TK is written into the other key-slot. Then, at the midpoint
of the refresh interval, the node switches the active key-slot to the one with
the new TK. In summary, TK management stores/utilizes t + 2 TKs, that is,
t TKs in the key-buffer are for authentication and recovery of lost TKs and 2
TKs in the key-slots for encryption/decryption.

4.2.1 Control Packets. LiSP uses three different control packets: InitKey,
UpdateKey, and RequestKey. InitKey is used by the KS to initiate TK refresh-
ment, and contains, t, the number of lost TKs that can be recovered; an initial
TK; Trefresh, TK refreshment interval; and MAC. The KS unicasts this packet to
each group member whenever it wishes to (re)configure TK management with
a given set of parameters. UpdateKey is used by the KS to periodically broadcast
the next TK in the key-sequence, and contains a new TK. RequestKey is used
by individual nodes to explicitly request the current TK in the key-sequence.
This packet is generated when a node failed to receive TKs over t key-refresh
intervals.

UpdateKey is broadcast to all group members, while InitKey and RequestKey
are unicast between KS and an individual member. Therefore, we use notation
InitKey(m) and RequestKey(m) to specify the unicast between KS and node m.
InitKey(m) uses node m’s master secret, MKm, for encryption and message au-
thentication, where MKm is shared only between the KS and node m via entity
authentication. By contrast, UpdateKey uses currently active TK for encryption.

4.2.2 Initial Setup. The KS precomputes a one-way sequence of keys,
{ TKi | i = 1, . . . , n }, where n is chosen to be reasonably large (e.g., 100).
It picks the last key, TKn, randomly and computes the entire key sequence
using the cryptographic one-way function H, where each TKi is derived as
TKi = H(TKi+1), i < n, or equivalently, TKi = Hn−i(TKn), H j (x) = H j−1(H(x))
and H0(x) = x. Then, at time tstart, the KS starts TK management by unicasting
to every node m in its group, InitKey along with t, TKt+2, Trefresh and MAC:9

KS → m: EMKm( t | TKt+2 | Trefresh ) | MAC( t | TKt+2 | Trefresh ),

where EK (x) is the encryption of x with key K , and MAC( y) generates a mes-
sage digest for y using the cryptographic hash function.

On receiving the InitKey(k) packet, node k (i) clears all previous TKs; (ii) allo-
cates a key buffer of length t (kb[t], . . . ,kb[1]), and two key-slots; (iii) computes
keys, TKt+1, . . . , TK1, from TKt+2; (iv) stores {TKt+2, . . . , TK3 } and { TK2, TK1 }
9The initial TK is not TK1 but TKt+2. t and Trefresh are network-wide parameters shared by all
groups. Since receivers cannot recover from InitKey loss, the KS should use external reliability
services like retransmissions and handshakes (RTS/CTS/Data/ACK).
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Fig. 4. TK Management: initial setup and rekeying.

in the key-buffer and key-slots, respectively; (v) activates TK1 for data encryp-
tion; and finally (vi) sets ReKeyingTimer that expires after Trefresh/2. When the
timer expires, the node (1) switches the active key to TK2, thus making the
key-slot (used to store TK1) available for the next encryption key TK3, and (2)
sets ReKeyingTimer to expire after Trefresh for future key switching. Figure 4
shows how the node copies TKs into the key-buffer and key-slots, and switches
the active-key after receiving TKt+2.

4.2.3 Re-keying. After the initial setup, the KS periodically discloses TKs,
starting with TKt+3 to all nodes in the group. That is, at time tstart + i · Trefresh,
the KS broadcasts UpdateKey packets containing TKi+t+2, i = 1, . . . , n − t − 2:

KS ⇒ group: ETKi+1 (TKi+t+2 )

where TKi+1 is the active encryption key at the time when UpdateKey is
broadcast.10

Upon receiving the UpdateKey packet, a node processes it as follows. If it had
received the same packet previously or the packet is not from its own KS, the
packet is discarded. Otherwise, it rebroadcasts the packet to all of its neighbors
and

(1) shifts the stored TKs, that is, kb[1] to the inactive key-slot and kb[i] to
kb[i-1], for 2 ≤ i ≤ t;

(2) executes TK authentication and recovery on the received TK, as described
in Section 4.2.4; and

(3) if successful, copies the received TK to kb[t] else discards TK.

Whenever ReKeyingTimer expires, the node (i) switches the active-key to the
TK in the other key-slot, and (ii) sets ReKeyingTimer to expire after Trefresh
elapses. Figure 4 illustrates how the key-buffer and key-slots are updated after
reception of TKt+3 and expiration of ReKeyingTimer.

4.2.4 Authentication and Recovery of Lost TKs. After receiving the
UpdateKey packet, each node verifies if the received TK is authentic, and, if

10The group members may reserve an IV value for UpdateKey packets to protect the UpdateKey

packet from keystream collisions.
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Fig. 5. TK management: authentication and recovery of lost TKs.

so, recovers lost TKs, if any, using the received TK. To recover from TK losses,
the key-buffer stores ≤t TKs. Let TK†

r , . . . , TK†
1 denote r (≤ t) TKs in the key-

buffer kb[r], . . . , kb[1], respectively, and TKk is the received TK. Then, there
are e = t − r empty slots in the key-buffer. It follows from the property of the
one-way key sequence that H(TK†

r ) = TK†
r−1, . . ., H(TK†

2) = TK†
1. Since TKk

belongs to the same one-way key sequence, it should meet the following two
conditions.

— Authenticity condition: TKk is authentic if He+1(TKk) = TK†
r , where r = t −e.

— Fault-tolerance condition: if 1 ≤ e ≤ t, there are e lost TKs, {TK†
t−i+1 =

Hi(TKk) | 1 ≤ i ≤ e}.
TK authentication and recovery uses these two conditions, and works as follows:

— Compute e and { Hi(TKk) | i = 1, . . . , e + 1 }.
— If He+1(TKk) �= TK†

r , discard TKk .
— Otherwise, if e ≥ 1 then copy {Hi(TKk) | i = 1, . . . , e} to the key-buffer.

Figure 5 illustrates how authentication and key-recovery works. On re-
ceiving TKk , the receiver computes e = 0 and H(TKk) = TKk−1, and hence,
TKk is authentic and there are no TK losses. At time tk+1, the node receives
TK∗

k+1(�= TKk+1), verifies that H(TK∗
k+1) �= TKk (e = 0), and drops TK∗

k+1. The
key-buffer thus stores (t − 1) TKs (or e = 1). At a later time tk+2, the node
receives TKk+2 and verifies that the received TK is the correct key by comput-
ing H2(TKk+2) = TKk , and recovers TKk+1 = H(TKk+2). Likewise, other TK
arrivals will be processed.

LiSP can also detect and correct the situation where a receiver misses TK-
disclosures. Consider the case when the node failed to receive TK at time tk+1
in Figure 5. This can be handled by the ReKeyingTimer event triggered at time
tk+1 + Trefresh/2: the event handler checks if TKs in the key-buffer has been
right-shifted because the last ReKeyingTimer event, and, if not, shifts kb[1] to
the inactive key-slot and kb[i] to kb[i-1], for 2 ≤ i ≤ t.

Use of the one-way key sequence for recovery of the lost keys in LiSP is
similar to that of TESLA. However, the two protocols differ significantly in the
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Fig. 6. TK Management (t = 1): robustness to clock skews.

way the one-way key sequence is applied. TESLA buffers all of the received
packets until it receives an error-free key, and hence, if it misses several key
disclosures, TESLA suffers from high latency and large buffer size. In contrast,
LiSP buffers only t + 2 TKs, so the buffer size is small and fixed. Moreover, the
KS distributes TKs well before its use for data encryption, and thus, the missed
TKs will not disrupt the ongoing data transmission.

4.2.5 Robustness to Clock Skews. The proposed TK management is robust
to clock skews among group members. As an example, Figure 6 illustrates, in
the time domain, key-slots of two nodes, A and B, when there exists a clock
skew between the two nodes. Thanks to the authentication and key-recovery,
loss of up to t TK losses will not affect the key-slot activation. Let c j be the
mapping from clock time to real time at node j , where c j (T ) = t means that
at clock time T , the real time is t. Then, the clock skew between A and B is
given by δ = |cA(T ) − cB(T )|. The figure shows that seamless TK rekeying is
preserved, if δ < Trefresh/2. During the marked period in Figure 6, A uses TK3
for encryption, while B still uses TK2 due to the clock skew between A and B.
However, since both A and B have the same decryption key pair, {TK2, TK3 },
they can communicate with each other during this period. In general, LiSP
can sustain the worst-case clock skew of Trefresh/2 (i.e., max{ |cA(T ) − cB(T )| :
∀A, B } < Trefresh/2).

Moreover, TK distribution from KS to group members also tolerates clock
skews of up to Trefresh/2. That is, TKk will be processed correctly if it arrives at
the node during the time interval [tk − Trefresh/4, tk + Trefresh/4], where tk is the
scheduled time when TKk is disclosed.

4.2.6 Reconfiguration. The KS will reconfigure the TK management at the
time of next rekeying, if (1) existing group members have been compromised;
(2) all n TKs have been disclosed; (3) a new node has joined the group; or (4)
a member has explicitly requested TK, because it missed more than t TK-
disclosures. The first two events force all group members to be reconfigured,
whereas the third and fourth events allow reconfiguration of the requesting
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Fig. 7. Message transmission and reception in LiSP.

node only. The required actions for each event are summarized as follows:

(1) The KS revokes compromised nodes, and if TKk−1 has been disclosed pre-
viously, discloses TKk+t+2, instead of TKk , using InitKey. This makes all
previous TK-disclosures (up to TKk−1) futile.

(2) KS computes a new key-sequence {TK′
i | i = 1, . . . , n }, and unicasts InitKey

with TK′
t+2 to all members.

(3) The KS performs entity authentication with the new node, and if successful,
sends the current configuration via an InitKey packet.

(4) The KS sends the requesting node an InitKey packet containing the current
configuration.

4.2.7 Tradeoffs. The performance of the proposed rekeying scheme in
terms of communication overhead, depends on the size of the group. As the
group size increases, each group will have more chances of getting compromised
per TK-disclosure, hence increasing the rate of reconfigurations. Since LiSP
achieves significant performance gain over conventional rekeying by broadcast-
ing TK-disclosures with no retransmissions, more frequent reconfigurations ef-
fectively mean poorer performance. In contrast, larger groups will have more
efficient broadcasting of a single TK-disclosure, improving the performance.
Therefore, we can make a tradeoff between these two, and there exists an op-
timal group size that maximizes the overall performance.

4.3 Message Encryption/Decryption

For intragroup communications, LiSP encrypts messages with the stream ci-
pher and the currently active TK. Since each node has two (even and odd)
key-slots, LiSP uses a 1-bit keyID to tell which of the two TKs to use. LiSP also
includes an ID of the sender and a per-packet IV to counter the keystream-reuse
problem.

Figure 7 shows the encryption/decryption and authentication of messages
from the sender, s, to the destination, d . The message transmission at
the sender side proceeds as follows. First, based on the TK referenced by
keyID, nodeID of the sender s, and the current IV, s generates a keystream,
keystream(TK, nodeID, IV), and then XORs the keystream with plaintext, P , to
build a ciphertext, C. Second, s computes a MAC, mac, to protect keyID, nodeID,
IV, and P , where mac = MAC(keyID|nodeID|IV|P ). Finally, s transmits to d the
following information over the wireless link:

s → d : keyID | nodeID | IV | C | mac.
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The data message/packet reception at the destination simply reverses the
above process. First, the keystream, keystream(TK, nodeID, IV), is regener-
ated using the TK pointed to by keyID, and then XORed with C to recover
the plaintext P ′. Second, d checks the integrity of P ′ by computing mac′ =
MAC(keyID|nodeID|IV |P ′) and comparing mac′ with the received mac. Only a
match will lead to the acceptance of P ′.

LiSP ensures that keystreams will never be reused, with the following opera-
tions. First, a sender blends its own nodeID into the generation of the keystream
to ensure that the various parties sharing TK use different keystreams. Second,
a sender increments its own IV by 1 for each message it transmits to avoid any
repetition of the keystream. Finally, the KS updates TK at an appropriately
chosen interval, Trefresh, guaranteeing that none of its members (including it-
self) starts to reuse IV. The length of the IV field can be made small, thanks to
TK rekeying.

The way LiSP manages TK and IVs differs significantly from that of SPINS.
In SPINS, IVs are not included in messages/packets, but maintained inter-
nally by two communicating peers. SPINS also updates TK whenever IV wraps
around. As a result, SPINS has shorter packets than LiSP by the length of
the IV field (plus keyID). However, SPINS performs poorer than LiSP in the
network of a large number of sensors for the following reasons. First, SPINS
incurs overheads of (triggered) TK rekeying and IV resynchronization, which
increases rapidly as the network size grows. Second, SPINS requires each sen-
sor to allocate memory for maintaining IV states of all other sensors, which
also increases with the network size. By contrast, LiSP can control the over-
head of TK re-keying regardless of the network size, and reduces the generation
of control packets, improving the performance in contention-based networks.

4.4 Intergroup Communication

Under LiSP, the entire network is divided into multiple groups, each with a KS.
This architecture is scalable in that compromises in one group do not affect the
other groups. It also retains high-performance rekeying, since each reconfigura-
tion is confined to a single group, while groups without any compromised node
keep broadcasting TKs. This means that TKs for intragroup communications
are independently managed by KSs.

For intergroup communications, KSs should coordinate with one another
under the control of KSN as follows. First, all KSs agree in advance on n, t, and
Trefresh, by receiving them from KSN. Also, the time to initiate TK management
is loosely synchronized with a clock skew of less than Trefresh/2. Second, KSs
and KSN use a key-agreement algorithm such as those in Steiner et al. [1998]
and Setia et al. [2000] to agree on the initial seed T Kn for the key-sequence,
thus ensuring all KSs to have the same key-sequence. Third, for intergroup
traffic, the KS prefixes to the encrypted payload the position of the encryption
key in the key-sequence.

4.5 Realization of LiSP

We now describe how to realize the proposed TK management protocol. Its
implementation is comprised of the server-side and client-side programs. Both
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Fig. 8. The pseudocode for the KS.

programs require external modules, such as the IDS, the entity authentication
protocol, and the cryptographic one-way function.

The pseudocode for KS is given in Figure 8. After initialization, the KS pe-
riodically broadcasts a new TK to all members. It also reconfigures the group
security in case of addition/compromise of a node, exhaustion of all TKs, or an
explicit request from a member node.

Figure 9 gives the pseudocode for client nodes.11 The client nodes are stateless
so that the client-side TK rekeying can be done at a very low cost. Each client
maintains two internal variables, e and TK†. e keeps track of the number of TK-
disclosures that the node failed to receive correctly, and TK† points to the most
recent TK in the key-buffer. The right-shift operation is done as illustrated in
Figures 4 and 5.

5. PERFORMANCE EVALUATION

We are interested in evaluating the resource consumption of the proposed TK
management and demonstrating its applicability to the resource-constrained
sensor devices. As mentioned earlier, the IDSs resource consumption is not a
concern, as it runs on a platform with enough resources. To evaluate the perfor-
mance of TK management, we first quantify (1) the overheads (in both compu-
tation and communication) a node pays to renew TKs, and (2) the performance
gain the node makes by adding reliability within LiSP. Then, based on the eval-
uation results, we analyze how LiSP defends itself against various attacks. In
this section, we present computation and communication overheads, efficiency
of the built-in reliability mechanism, and analyze the security achieved with
LiSP.

11The KS should also perform these tasks for proper communication with other clients.
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Fig. 9. The pseudocode for the client.

Table I. Computational Overhead

Key-Server Client
Initial setup n · CH (t + 1) · CH
Rekeying — (e + 1) · CH

5.1 Computational Overhead

We evaluate the computational overhead of LiSP per group, demonstrating its
robustness to losses of, and attacks on, TKs. Since hash computation is the
most resource-consuming operation (as compared to data copying/moving), we
only consider the cost of computing the cryptographic hash function, H. Let CH
denote the cost of computing a single hash function. Then, computational costs
for the KS and the client are given in Table I.

We want to evaluate the average number of hash computations per TK-
disclosure. First, the KS, on average, computes NKS = n

n−t−1 < 1. Since
NKS ≈ 1, if n� t, the KS performs approximately one hash computation
per TK-disclosure. Second, the expected number of hash computations
per TK-disclosure, E[Nclient], of a client is derived in the Appendix, un-
der the assumption that each occurrence of TK loss or failure is ran-
dom and mutually independent. Given fixed pL (=Pr{TK is lost }) and pF
(=Pr{TK authentication fails | TK is received }), from Equation (A.12), we have

E[Nclient] =
t∑

k=0

(k+1)(1− pL)(pL + pF )k p(0, 0)+(t +1)(pL + pF )t+1 p(0, 0) (1)
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Fig. 10. The expected number of hash computations per TK-disclosure at the client node vs. pL:
pF = 0.1 ∼ 0.4, t = 10.

Fig. 11. The expected number of hash computations per TK-disclosure at the client node vs. pF :
pL = 0.1 ∼ 0.3, t = 10.

where

p(0, 0) = 1 − (pL + pF )
1 − (pL + pF )t+1

. (2)

pL reflects the channel condition: a higher pL represents a highly lossy wire-
less channel. By contrast, pF is mostly affected by the adversary’s attempts to
manipulate TKs, leading to a DoS attack. So, E[Nclient] must be small even in
case of a high pF .

Figure 10 plots E[Nclient] as a function of pL, while varying pF from 0.1 to
0.4. Similarly, Figure 11 plots E[Nclient] as a function of pF , while varying pL
from 0.1 to 0.3. The key-buffer length, t, is set to 10. The points marked with ‘
’
in the figures are the simulated numbers of the average hash computations for
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Fig. 12. The normalized communication cost at the client node versus t: pF = 0.1 − 0.4, α = 10,
pL = 0.05, n = 1, 000.

100,000 TK-disclosures. The simulation results closely match those obtained
from the above equation, verifying the accuracy of the equation.

Figures 10 and 11 show that pF has greater influence on the expected hash
computations than pL. For instance, if pF = 0, each node incurs one hash
computation, while if pF = 0.5, it computes 2.5–3 hash functions, because all
incoming TKs must be authenticated via hash computations. Each client com-
putes less than three hash functions per TK-disclosure even in the worst case,
that is, when a half of TK broadcasts get corrupted by the attacker (pF = 0.5).

5.2 Communication Overhead

We evaluate the overhead of communication between the KS and a client, and
show that the key-buffer length determines the communication overhead. The
expected communication cost, Ccomm, normalized by the communication cost of
UpdateKey transmission is (see the Appendix for its derivation):

Ccomm = α

[
1
n

+ (pL + pF )t p(0, 0)
]

+
t−1∑
k=0

(pL + pF )k p(0, 0) (3)

where α is the ratio of the communication cost of InitKey to that of UpdateKey.
The value of Ccomm close to 1 means that most TK-disclosures are made through
UpdateKey, and hence, LiSP is efficient in terms of communication overhead.
By contrast, LiSP gets less efficient as Ccomm approaches α.

Figure 12 plots Ccomm as a function of t when α = 10, pL = 0.05, and n =
1, 000. This choice of α implies that the cost of InitKey transmission is 10
times higher than that of UpdateKey broadcasting, due to the larger packet size
of InitKey and requirements for reliability and authentication services. The
results show that, regardless of pF , a smaller t incurs a higher communication
overhead. Thus, it is better for the KS to configure LiSP with a large t, as far
as clients can allocate the required key-buffer space. A desirable value of t is 5
or 6, with which the normalized communication cost approaches 1, even under
serious attacks.
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Table II. Transmission Costs

No. of Packets Total Cost in Bytes
LiSP 0.7N 12.6N
Unicast 4N 58N

5.3 Efficiency of TK Management

We would like to evaluate the performance of LiSP, and show its effectiveness
in reducing energy consumption. Since a significant portion of energy is spent
on packet transmission, we measure transmission costs (both the number of
control packets and the total cost in number of bytes) per TK-disclosure. We
consider a group consisting of a KS and N group members. It is reasonable to
assume that the spanning tree for the group has been established, and hence,
each node in the group knows its child nodes.

We compare the proposed TK distribution with the scheme based on uni-
casts plus explicit message authentication. Other link-layer broadcasting
schemes [Tourrilhes 1998; Tang and Gerla 2000] are excluded because they
do not ensure 100% reliability. In LiSP, the KS broadcasts UpdateKey and, upon
receiving the packet, intermediate nodes rebroadcast it if they have at least one
child node. Therefore, each TK distribution incurs strictly less than N broad-
casts. On the other hand, in the unicast scheme, each node in the group must
receive a packet from its parent node via handshake (RTS/CTS/Data/ACK), re-
quiring exactly N unicasts. Also, the unicast packet must include a message
authentication code in it.

For the purpose of evaluation, we chose parameter values based on settings
in Ye et al. [2002], that is, the sizes of the link-layer header, CRC, RTS, CTS,
and ACK are 6, 2, 8, 8, and 8 bytes, respectively. Each TK is set to be 10 bytes
long and the message authentication code (MD4) is 16 bytes long. Then, the
size of broadcast (UpdateKey) and unicast packets are 18 and 34 bytes, respec-
tively. To determine the number of broadcast packets generated in LiSP, we
conducted simulation, in which locations of N nodes were randomly generated,
a spanning tree among them was built, and the total number of broadcast pack-
ets were counted. The result is that a group of N nodes (excluding the KS), on
average, generated 0.7N broadcast packets per TK-disclosure. From these re-
sults, we can calculate the transmission costs of LiSP and the unicast scheme,
as given in Table II.12 Clearly, LiSP outperforms the unicast scheme in that
the transmission cost of LiSP is only 18% (in number of packets) and 22% (in
number of bytes) of the unicast case.

5.4 Security Analyses

We now discuss how LiSP defends against various attacks. As described in
Section 3, an adversary either passively eavesdrops ongoing packet transmis-
sions or actively inject packets into the network to disrupt network functions.
In particular, the adversary will likely mount active attacks against TK man-
agement, that is, modifying/injecting false TKs, jamming the channel to disrupt

12In the unicast scheme, we ignored possible collisions on RTS packets.
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TK reception, inducing collisions on packets conveying TK, forcing nodes to re-
peat TK retransmission, and so on. These attacks may, in turn, result in DoS,
replay and man-in-the-middle attacks.

LiSP is effective in defeating attacks on TK management as follows. First,
any modification to the TK will be rejected by the authentication test at the
receiver. Similarly, any dropped TK due to collision will be recovered before
its activation. Second, the expected computational overhead is bounded: (i) as
shown in Section 5.1, each node incurs, on average, less than three hash com-
putations, even when about 65% of TKs are manipulated/compromised by the
attacker; (ii) the KS can easily detect the presence of attacks and disable the
associated nodes, if more than a half of TKs fail authentication tests. There-
fore, LiSP is robust to DoS attacks (attempting to interfere with TK distribution
via high-power jamming and forced collisions or retransmissions) in that each
client is expected to compute up to three hash computations per TK-disclosure
and lost/corrupted TKs can be recovered without retransmissions. Third, replay
attacks will not succeed; since the TK manager expects a unique TK in the given
refreshment interval that cannot be inferred from the past TKs, replayed TKs
will not pass authentication tests. Fourth, LiSP defeats main-in-the-middle at-
tacks, in which the attacker fools the group as if s/he were the KS, because each
client is capable of rejecting a false KS in the mutual authentication stage with
the KS. Finally, from the fact that TK is transmitted every Trefresh, the adver-
sary can predict when to launch an attack. We can prevent this by introducing
randomization: the KS adds �, chosen from the interval [−Trefresh/8, Trefresh/8],
to the scheduled broadcast time. However, this scheme will reduce the timing
margin against clock skews to Trefresh/4.

The attacker may subvert a node and acquire all key information. In such
a case, s/he can eavesdrop communications and immediately inject bogus mes-
sages within the group. However, LiSP preserves the security of the whole
network as follows. First, this attack will be valid only until an IDS, run-
ning on KS, detects/disables the node. Note that it is crucial to have a good
IDS, which can uncover any compromise on keys or the node itself with
minimal latency. Second, the scope of this attack will be limited to a single
group.

Finally, LiSP prevents attacks on data packets. It does not allow the attacker
to mount keystream reuse-based attacks by periodically renewing TK, and mix-
ing nodeID and per-packet IV in the generation of keystreams, as explained in
Section 4.3. Moreover, s/he can neither decipher nor inject/modify data packets,
without the knowledge of TK.

6. CONCLUSION

In this paper, we proposed a LiSP that makes security/energy-efficiency trade-
offs via efficient refreshment of keys. In LiSP, a KS independently maintains
the security of a group using two main components: intrusion detection and
TK management. By employing the cryptographic one-way function and TK
double-buffering, the TK management offers (i) efficient TK broadcast without
relying on retransmissions/ACKs; (ii) authentication and TK recovery without
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incurring additional overhead; (iii) seamless TK rekeying without disrupting
ongoing data traffic. Moreover, it tolerates very loose time synchronization and
does not require reliability support at the link layer.

We evaluated the performance of LiSP using overhead measurements and
security analyses. The measurement results have shown that (1) each node
computes, on average, less than three hash functions per TK-disclosure, even
in the presence of severe attacks on TKs, and (2) with the storage of ≥8 TKs
(t ≥ 6), LiSP distributes most TKs via broadcasting, and hence, it is very ef-
ficient compared to other reliability mechanisms. Our security analyses have
demonstrated LiSP’s effectiveness in defeating various security attacks. LiSP’s
strength lies in meeting conflicting goals of providing high-level security and
maximizing energy efficiency.

APPENDIX

We derive, through the Markov chain analysis, the computation overhead of
client nodes and the communication overhead between the KS and the client.
We assume that each occurrence of TK loss or failure is random and mutually
independent. We also assume that if the key-buffer of a node becomes empty, it
finishes the operation, the request/reception of a current TK (via RequestKey),
within Trefresh. These are reasonable assumptions in that Trefresh is typically
large enough to uncorrelate them. In this Appendix, we first derive a closed-
form expression for steady-state distributions for key-buffer states, and then
derive computation and communication overheads.

A.1 Steady-State Distributions

We model the state of each node with a 2-dimensional Markov chain, as shown
in Figure 13. Each state (i, j ) represents that there were i TK losses and j
TK failures, and hence, there are (i + j ) empty slots in the key-buffer. The
state transition is triggered by three events: a TK loss, a TK authentication
failure, and a successful TK reception. As the node misses a TK, the state will
be transitioned horizontally, whereas the authentication failure of the received
TK will cause a vertical state transition. Let pL = Pr {TK is lost}, pF = Pr {TK
authentication fails | TK is received} and pS = 1 − pL − pF . Also, let p(i, j )
denote the steady-state probability of state (i, j ), and pe(k) the probability that
there were exactly k empty slots. Then, we have

pe(k) =
∑

i+ j=k

p(i, j ), k = 0, . . . , t (A.1)

and

t∑
k=0

pe(k) = 1. (A.2)
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Fig. 13. The state transition diagram for LiSP.

We derive steady-state distributions, p(i, j ) and pe(k) ∀i, j , k, as follows.
From the global balance equations, we get

p(i, j ) =




pF · p(i, j − 1), i = 0, j > 0
pL · p(i − 1, j ), i > 0, j = 0
pF · p(i, j − 1) + pL · p(i − 1, j ), i > 0, j > 0
p∗/(pF + pL), i = j = 0

(A.3)

where

p∗ =
∑

i′+ j ′<t,(i′, j ′)�=(0,0)

pS · p(i′, j ′) +
∑

i′+ j ′=t

p(i′, j ′). (A.4)

Representing p(i, j ) with respect to p(0, 0) yields

p(i, j ) =
(

i + j
i

)
· pi

L p j
F · p(0, 0), (i, j ) �= (0, 0). (A.5)

From Equations (A.1) and (A.5), we have

pe(k) = (pL + pF )k · p(0, 0), k = 0, . . . , t. (A.6)

Then, from Equations (A.2) and (A.6), p(0, 0) is given by

p(0, 0) = 1 − (pL + pF )
1 − (pL + pF )t+1

. (A.7)

A.2 Computational Overhead

We derive the expected number of hash computations per TK-disclosure. Let
Nclient denote the number of hash computations per TK-disclosure. If there is
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exactly k (< t) empty slots, Nclient is given by

Nclient =




0, TK is lost
k + 1, TK authentication fails
k + 1, TK authentication succeeds.

(A.8)

When all t slots are empty, if the node encounters a TK loss or failure, it must
explicitly request the next TK via RequestKey, and then do (t + 1) additional
hash computations using the received TK. Therefore,

Nclient =




t + 1, TK is lost
2t + 2, TK authentication fails
t + 1, TK authentication succeeds.

(A.9)

The expected Nclient when there are k empty slots, E[Nclient | kempty], is thus
derived as

E[Nclient | k empty] =
{

(k + 1) · (1 − pL), k < t
(t + 1) · (1 − pL) + (t + 1) · (pL + pF ), k = t

(A.10)

Finally, E[Nclient] is given by

E[Nclient] =
t∑

k=0

E[Nclient | k empty] · pe(k) (A.11)

=
t∑

k=0

(k + 1)(1 − pL)(pL + pF )k p(0, 0) + (t + 1)(pL + pF )t+1 p(0, 0).

(A.12)

A.3 Communication Overhead

We finally derive the communication cost of a client per TK-disclosure. Let Cinit
and Cupdate denote communication costs for transmitting InitKey and UpdateKey
packets, respectively. Also, let α = Cinit/Cupdate. Then, α > 1, because the
InitKey packet consumes more bandwidth/resources. The KS will transmit the
InitKey packet (1) once every n TK-disclosures; and (2) if all t slots in the key-
buffer become empty, else the UpdateKey packet is broadcast. Therefore, the
expected communication cost of a client is

Cinit ·
[

1
n

+ pe(t)
]

+ Cupdate ·
t−1∑
k=0

pe(k).

The communication cost normalized by Cupdate is given by

Ccomm = α ·
[

1
n

+ pe(t)
]

+
t−1∑
k=0

pe(k) (A.13)

= α ·
[

1
n

+ (pL + pF )t p(0, 0)
]

+
t−1∑
k=0

(pL + pF )k p(0, 0). (A.14)
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