CSCI 3333 Data Structures
 Spring 2011
Final exam
p.5

Test time: 120 minutes (no extension)
Your name:

Score:

 / 60.

Note:

Provide precise answers. Budget your time over the questions!

Your writing should be easy to read. When possible, try to print your answers.

You may use the back of the page as scratch paper or to write your answers.
1. (5 pts) Suppose the cost of a binary search algorithm, when applied to a sorted array, is measured by the number of array elements that are examined by the algorithm. Given an array of 2,048 elements, what is the average cost of the binary search algorithm? Justify your answer.
2. The class LinkedList defines a generic linked list. As shown below, a linked list list has been constructed and passed into the method alterList() as the actual argument.

public class ListNode<T> {

T data;

ListNode next;

public static void alterList (ListNode li) {

ListNode temp = new ListNode();

temp = li.next;

temp.data = 100;

temp = temp.next;

temp.next = null;

}

public static void main (String args[]) {

ListNode list = new ListNode();

…
//after certain statements to create the linked list shown above
alterList(list); //method call

}

} // class: ListNode
2.1. (5 pts) Show how the list would look like after the function call.

3. The class BinaryTree defines a generic Binary Tree. As shown in Figure x, a Binary Tree bt has been constructed and passed into the method alterTree() as the actual argument.

	public class BinaryTree<T> {

T data;

BinaryTree left;

BinaryTree right;

public static void alterTree (BinaryTree t) {

BinaryTree temp = t.right;

t.right = t.left.left;

r.left = temp.left;

}

public static void main (String args[]) {

 BinaryTree bt = new BinaryTree ();

 …

 //after certain statements to create the tree

 …

 alterTree (bt); //method call

}

} // class: BinaryTree

	
[image: image1.png]

Figure x. A sample binary tree

3.1. (5 pts) Show how the binary tree would look like after the function call.

3.2. Suppose the cost of an operation upon a binary tree is defined as the number of tree nodes that need to be retrieved by the respective algorithm. Use the example binary tree bt in Figure x above when answering the following questions:

3.2.1. (5 pts) What’s the cost of insert (5)? Justify your answer.
3.2.2. (5 pts) What’s the cost of remove (4)? Justify your answer. Show how the tree looks like after the operation is completed.
4. Given the following recursive function definition, answer the questions.
	Function f1 (int k) {

 Print k;

if (k <= 0) return k;

else return f(k/2);
}

4.1. (5 pts) If f1(25) is called, what’s the screen output and the return value?

4.2. (5 pts) Rewrite f1() by using iteration/looping to replace recursion. Note: Your revised function should return the same result as f1() for a given k.
5. (5 pts) The Shellsort algorithm is a subquadratic algorithm. That is, its running time is o(N2). Explain what that means.
6. (5 pts)The process of developing a program is summarized below. Fill in the missing steps.
1) Understand the given requirements.
2) Design the program
3) Implement the design (by coding each of the classes defined in the design).
4) Test the implemented program(s).
7. (5 pts) What is the fundamental problem with hashing using linear probing?
8. (10 pts) The following is an implementation of the Quicksort algorithm. Show the screen output when

quicksort (arr, 0, 5) is called. The content of the array arr is shown below.
	index (
	0
	1
	2
	3
	4
	5

	value (
	100
	222
	155
	78
	15
	3301

	private static <AnyType extends Comparable<? super AnyType>> void quicksort(AnyType [] a, int low, int high)

{

 System.out.println(“low: “+low+”\thigh”+high);

 if(low <= high)

 return;

 else

 {

 // Sort low, middle, high

 int middle = (low + high) / 2;

 System.out.println(“mid: “+middle);

 if(a[middle].compareTo(a[low]) < 0)

 swapReferences(a, low, middle);

 if(a[high].compareTo(a[low]) < 0)

 swapReferences(a, low, high);

 if(a[high].compareTo(a[middle]) < 0)

 swapReferences(a, middle, high);

 // Place pivot at position high - 1

 swapReferences(a, middle, high - 1);

 AnyType pivot = a[high - 1];

 // Begin partitioning

 int i, j;

 for(i = low, j = high - 1; ;)

 {

 while(a[++i].compareTo(pivot) < 0)

 ;

 while(pivot.compareTo(a[--j]) < 0)

 ;

 System.out.println(i+”\t”+j);

 if(i >= j)

 break;

 swapReferences(a, i, j);

 }

 // Restore pivot

 swapReferences(a, i, high - 1);

 quicksort(a, low, i - 1); // Sort small elements

 quicksort(a, i + 1, high); // Sort large elements

 }

 }

Screen output:

3

20

5

li

10

_1363515781

