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ABSTRACT 
Target tracking is one of the most important applications of 
wireless sensor networks. Optimized computation and energy 
dissipation are critical requirements to maximize the lifetime of 
the sensor network. There exists a demand for self-organizing and 
routing capabilities in the sensor network. Existing methods 
attempting to achieve these requirements, such as the LEACH-
based algorithms, however, suffer either redundancy in data and 
sensor node deployment, or complex computation incurred in the 
sensor nodes. Those drawbacks result in energy use inefficiency 
and/or complex computation overhead. OCO, or Optimized 
Communication and Organization, is an algorithm that ensures 
maximum accuracy of target tracking, efficient energy dissipation, 
and low computation overhead on the sensor nodes. Simulation 
evaluations of OCO are compared with other two methods under 
various scenarios. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
Communication, Sensor Networks 

General Terms 
Measurement, Performance, Design, Experimentation 

Keywords 
Sensor Network, Object Tracking 

1. INTRODUCTION 
Wireless sensor networks have significant impact upon the 
efficiency of military and civil applications such as environment 
monitoring, target surveillance, industrial process observation, 
tactical systems, etc. In these scenarios, target tracking is one of 
the most important applications of wireless sensor networks.  

The simplest way for target surveillance is to turn on the sensor 
module of all the nodes in the network and have each node 
communicate directly with the base, the so-called Direct 
Communication (DC) method.  

The DC method gives the best accuracy in tracking objects. 
However, it is unrealistic because the base has a limited number 

of channels. In addition, the node’s communication distance is 
limited, so this method is not applicable to a large area.  

Another issue of efficient target tracking in sensor networks is 
redundancy. Because nodes are typically deployed at random 
locations (for example, thrown by an airplane), it leads to 
overlapping among sensing areas of the nodes. 

Existing computer network protocols may not be applicable to 
sensor networks, because sensor nodes are constrained in energy 
supply, performance, and bandwidth. Existing methods attempting 
to alleviate these constraints, such as the LEACH-based 
algorithms [2], however, either suffer redundancy in data and 
sensor node deployment, or require complex computation in the 
sensor nodes. Those drawbacks result in energy use inefficiency 
and/or complex computation overhead. Therefore, there exists a 
demand for self-organizing and routing capabilities in the sensor 
network, in order to achieve optimized computation and energy 
dissipation, and to maximize the lifetime of the sensor network.  

In this paper, we present the results of simulation-based 
evaluations of three algorithms for sensor networks. The first is 
the Direct Communication (DC) method [1]; the second is the 
well-known LEACH [2], while the third is a method we devise, 
OCO (or Optimized Communication and Organization). OCO 
ensures not only maximum accuracy of target tracking, but also 
efficient energy dissipation and low computation overhead.  

In the next section, the three methods are overviewed1. In section 
3, we discuss the simulation models, tools, and metrics used in 
evaluating the three methods. Results of the evaluations under 
various scenarios are discussed in section 4. 

2. THE EVALUATED METHODS 
 

In DC, sensor modules of all nodes are ON and nodes send 
information about the intruders to the base directly. 
There are 2 phases in LEACH: set-up phase and steady-phase. In 
the set-up phase, sensors may elect randomly among themselves 
local cluster heads. After the set of cluster heads are selected, each 
of the cluster heads advertises to all sensor nodes in its 
communication area that it is the new cluster head. Once a node 
receives such advertisements, it decides to which cluster head it 
would belong. Finally, the cluster head assigns the time slot on 
which the sensor nodes can send data to them.  In the steady-
phase, sensors begin to sense and transmit data to the cluster 
heads. After a certain period of time spent in the steady state, the 
network is refreshed by entering the set-up phase again. 

                                                 
1 Due to space limitation, detailed discussion of the OCO method is not 
possible in this paper. Interested readers may contact the authors to obtain 
the detailed algorithms for the various phases. 
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OCO has 4 phases: position-collecting, processing, tracking, and 
maintenance.  
The position-collecting phase involves the base’s collecting 
positions of all the nodes in the network. The processing phase 
involves the base’s cleaning up the redundant nodes, detecting the 
border nodes, and routing. The tracking phase detects all objects 
coming from outside the perimeter of the sensor network. 
Normally, only the sensor modules of the border nodes are ON. 
When a border node detects an object, it periodically sends its 
position information to the base by using its father’s ID. When it 
has lost the object, it sends a message to turn on the sensor 
modules of all its neighbors2. If a neighbor detects the object, it 
will continue sending its position to the base and, right after it has 
lost the object, it turns the sensor modules of all its neighbors to 
ON, and so on. If activated neighbors detect nothing, they 
automatically turn the sensor module OFF after a short interval. 
This way, the objects are tracked as long as it remains within the 
network perimeter. The maintenance phase is started when the 
network has a dead node (for example, the node has run out its 
energy). In this case, the base just deletes the dead node from the 
list, and then re-organizes the network by starting the 4-step 
procedure over.  

3. SIMULATION AND EVALUATIONS 
3.1. Models and Tools 
The simulation models that we have built to test the performance 
of the three methods are based on [3], and consist of three sub-
modules: a sensor-node model, a sensor-network model, and an 
intruder-object model. 
The sensor-node model is used to simulate a sensor node. It 
includes three layers: application, MAC, and physical layer. It 
contains several modules, including the coordinator module, the 
radio module, the sensor module, and the energy module, as 
illustrated in Figure 1. Physical layer represents the interfaces 
with other nodes. The MAC layer represents pre-processing 
packet layers. In the simulations, the performance of the MAC3 
layer is not considered.  

 
Figure 1: A sensor-node model 

The sensor-network model contains a set of sensor nodes, and is 
used to represent the sensor network. Two nodes can 
communicate with each other if the distance between them is 
smaller than their communication radius. 
The intruder-object model represents the intruding object. 
Although being similar to the sensor node, an object has only two 
layers: the application layer on top of the physical layer. 

                                                 
2 It is assumed that the delay time to activate the neighbors is smaller than 
the value of the sensing radius divided by the speed of the intruding 
object. 
3 The MAC layer module is actually disabled to speed up the simulation. 

The tools used to implement the models include C# (for 
processing programs), OMNeT++ (for simulation), and MatLab 
(for analyzing and evaluating simulation results). 

3.2. The Metrics 
Four metrics are used in evaluating the methods: 
• Energy consumption measures the total energy consumed by 

the sensor nodes after the simulation is started. 
• Accuracy is the number of detected positions of the intruding 

object(s) in a given method, compared to the number of 
detected positions in the DC method, which is used as the base 
of comparisons [4]. 

• Cost per detected position is the ratio between energy 
consumption and the number of detected positions. 

• Time before the first dead node is the time when the first node 
of the network runs out of energy [2]. 

3.3. Simulation Environment 
The simulation environment is built as an area of 640x540. The 
number of nodes in the network is 200, 250, 300, 350, 400, 450, 
500,550, 600, 650,700, 750, 800, 850, 900, 950, and 1000 with 2J 
(Joule4) of energy for each node. In each situation, nodes and the 
base station are placed randomly. The sensing radius and the 
communication radius of the nodes are set as 30 and 60 
respectively. Table 1 is a summary of the respective consumed 
energy, with respect to various tasks. 

Create/Receive a data message 
Create/Receive a signal message 

100 µJ 
3 µJ 

Send a data message (d<= 60m) 
Send a signal message (d<=60m) 

820 µJ 
26 µJ 

Send a message (d > 60m) 100 µJ + 0.1*d^2 
Sensor board (full operation) 66 µJ/s 
Radio board (idle/receive mode) 100 µJ/s 

Table 1: Energy consumption for various tasks 

 
Figure 2: Sample simulation environment of DC  

                                                 
4 A Joule (J) is the unit for measuring quantity of energy. 
1 Watt = 1 Joule/second 



 

Figures 2, 3, and 4 are the simulation screen shots of the sensor 
networks constructed respectively by the three methods. The big 
red circle in the figures represents the base, and the red dot with 
arrows pointing out represents the intruder object. In Figure 3 
(LEACH), the blue nodes are the cluster heads. In Figure 4 
(OCO), the yellow nodes represent the border nodes, and the 
orange nodes the activated nodes. 

 
Figure 3: Sample simulation environment of LEACH 

 
Figure 4: Sample simulation environment of OCO 

4. RESULTS 
Results from two different cases are presented in this section. In 
the base case, the three methods are evaluated in environments 
with no intruder object present; in the second case, one intruder is 
present in the simulation environments. 

4.1. The Base Cases: no intruder objects 
In the base case, two metrics, Energy consumption and Time 
before the first dead node, are measured. The results of running 
the three methods in 9000 seconds of simulations are shown in 
Figures 5 and 6. As shown in figure 5, when the number of nodes 
increases, the energy dissipation of OCO goes to a constant, 
delivering much better result than the other methods. The only 
exception is when the number of node is 200, which is the only 
case when OCO’s value is higher. The reason is that, when the 
number of node increases, the size of the border in OCO decreases 
(less gaps between border nodes and straighter border line). The 
minimum is reached at 950.  

Figure 5: Energy Consumption (no intruder) 

 
Figure 6: Time before the first dead node (no intruder)5  

Time before the first dead node, as illustrated in Figure 6, shows 
that OCO lasts longer than LEACH in all cases. Although DC 
shows superior performance in this regard, it is not a practical 
method, and is thus used mainly as a base of comparison.  

4.2. The Tracking Cases: one intruder object 
In this section, the simulation results are divided into two cases. 
Each of the cases represents the collected metrics given a 
particular path of the moving object (Figure 7), with the moving 
speed being 10 points/s. The paths are created by drawing images, 

                                                 
5 Value of 1,000 means there is no dead node in the network during the 
9000 seconds of simulation. 



 

which is then read by a Mathlab script to generate text files of all 
points belonging to the paths. In each of the cases, four figures are 
presented to show the results with respect to the four metrics.  

 
Case 1: Diagonal zigzag path Case 2: Along-the-border path 

Figure 7:  The paths for different cases  

4.2.1. Results of Case 1 
The path used in this case represents the scenario where the 
moving object moves along a zigzag course diagonally (lower left 
to upper right) across the sensor network (Figure 7, case 1). 

Figure 8: Energy consumption of the three methods6 
In Figure 8, OCO delivers more stable results than the others in all 
cases except when the number of nodes is smaller than 300. Our 
explanation is that, in those cases, there are very few nodes in the 
area, so most of the nodes are ON. It means OCO is close to DC 
or LEACH in terms of the number of ON nodes; however, OCO 
has to spend energy in colleting node positions. That is why OCO 
would consume more energy than the others when the number of 
nodes is less than 300.  
As shown in Figure 9, the accuracy of OCO is compatible to DC 
in most of the cases. LEACH, although showing very good results 
when the number of nodes is higher than 700, exhibits less stable 
results when the number of nodes is lower than 700. 
Figure 10 shows the cost associated with each of the detected 
object positions. OCO’s cost is the lowest in all the cases when 
the number of nodes is greater than 300. The cost of LEACH in 
general increases relative to the number of nodes. 
As shown in Figure 11, the time before the first dead node appears 
to be “fluctuating” across the cases, because, depending on the 
relative distance between the intruding object and the base, one of 
the nodes may run out of energy early. Still, as shown in Figure 
11, an OCO network lasts longer than LEACH in all cases. 

                                                 
6 The “spikes” exhibited by DC and LEACH at 600 and 1,000 
were caused by the fact that the base station in those cases were 
far from the moving paths, resulting in more energy consumption. 

Figure 9: Accuracy of the three methods 

Figure 10: Cost per detected point of the three methods 

Figure 11: Time before the first dead node of the three methods 

4.2.2. Results of Case 2 
The path used in this case represents the scenario where the 
moving object moves approximately along the border of the 
sensor network, starting at the upper left corner toward the lower 
right corner, and then coming back to the upper left corner (Figure 
7, case 2).  Results of case 2 are compatible with case 1. As 
shown in Figure 12, energy consumption of OCO is smaller than 
the others when the number of node is greater than 300.  



 

 
Figure 12: Energy consumption (Case 2) 

The accuracy of OCO reaches 100% in almost all cases, as shown 
in Figure 13. LEACH’s accuracy reaches 100% in cases when the 
number of nodes is greater than 750. 

 
Figure 13: Accuracy (Case 2) 

 
Figure 14: Cost per detected point (Case 2) 

In Figure 14, OCO is shown to have spent the least energy with 
respect to each of the detected points, in almost all cases. In 
particular, at 800, OCO’s cost is the lowest while ensuring almost 
100% accuracy (Figure 13). 
Similar to case 1, the results with respect to time before the first 

dead node (Figure 15) are somewhat ‘fluctuating’. OCO still 
exhibits better longevity than LEACH across all cases. 

 
Figure 15: Time before the first dead node (Case 2) 

5. SUMMARY AND FUTURE WORK 
Based on our simulation study, OCO appears to consume less 
energy than the others, while maintaining maximum accuracy. 
One potential extension of our work is to evaluate the methods 
under different scenarios, for example with multiple intruding 
objects. In addition, we plan to add security features into OCO, 
since the sensor network usually operates in hostile environments. 
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