
Evaluations of Target Tracking
in Wireless Sensor Networks

Sam Phu Manh Tran T. Andrew Yang

University of Houston – Clear Lake
2700 Bay Area Blvd., Houston, Texas 77058

(281) 283-3835
tpmsam@yahoo.com yang@uhcl.edu

ABSTRACT
Target tracking is one of the most important applications of
wireless sensor networks. Optimized computation and energy
dissipation are critical requirements to maximize the lifetime of
the sensor network. There exists a demand for self-organizing and
routing capabilities in the sensor network. Existing methods
attempting to achieve these requirements, such as the LEACH-
based algorithms, however, suffer either redundancy in data and
sensor node deployment, or complex computation incurred in the
sensor nodes. Those drawbacks result in energy use inefficiency
and/or complex computation overhead. OCO, or Optimized
Communication and Organization, is an algorithm that ensures
maximum accuracy of target tracking, efficient energy dissipation,
and low computation overhead on the sensor nodes. Simulation
evaluations of OCO are compared with other two methods under
various scenarios.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication, Sensor Networks

General Terms
Measurement, Performance, Design, Experimentation

Keywords
Sensor Network, Object Tracking

1. INTRODUCTION
Wireless sensor networks have significant impact upon the
efficiency of military and civil applications such as environment
monitoring, target surveillance, industrial process observation,
tactical systems, etc. In these scenarios, target tracking is one of
the most important applications of wireless sensor networks.

The simplest way for target surveillance is to turn on the sensor
module of all the nodes in the network and have each node
communicate directly with the base, the so-called Direct
Communication (DC) method.

The DC method gives the best accuracy in tracking objects.
However, it is unrealistic because the base has a limited number

of channels. In addition, the node’s communication distance is
limited, so this method is not applicable to a large area.

Another issue of efficient target tracking in sensor networks is
redundancy. Because nodes are typically deployed at random
locations (for example, thrown by an airplane), it leads to
overlapping among sensing areas of the nodes.

Existing computer network protocols may not be applicable to
sensor networks, because sensor nodes are constrained in energy
supply, performance, and bandwidth. Existing methods attempting
to alleviate these constraints, such as the LEACH-based
algorithms [2], however, either suffer redundancy in data and
sensor node deployment, or require complex computation in the
sensor nodes. Those drawbacks result in energy use inefficiency
and/or complex computation overhead. Therefore, there exists a
demand for self-organizing and routing capabilities in the sensor
network, in order to achieve optimized computation and energy
dissipation, and to maximize the lifetime of the sensor network.

In this paper, we present the results of simulation-based
evaluations of three algorithms for sensor networks. The first is
the Direct Communication (DC) method [1]; the second is the
well-known LEACH [2], while the third is a method we devise,
OCO (or Optimized Communication and Organization). OCO
ensures not only maximum accuracy of target tracking, but also
efficient energy dissipation and low computation overhead.

In the next section, the three methods are overviewed1. In section
3, we discuss the simulation models, tools, and metrics used in
evaluating the three methods. Results of the evaluations under
various scenarios are discussed in section 4.

2. THE EVALUATED METHODS

In DC, sensor modules of all nodes are ON and nodes send
information about the intruders to the base directly.
There are 2 phases in LEACH: set-up phase and steady-phase. In
the set-up phase, sensors may elect randomly among themselves
local cluster heads. After the set of cluster heads are selected, each
of the cluster heads advertises to all sensor nodes in its
communication area that it is the new cluster head. Once a node
receives such advertisements, it decides to which cluster head it
would belong. Finally, the cluster head assigns the time slot on
which the sensor nodes can send data to them. In the steady-
phase, sensors begin to sense and transmit data to the cluster
heads. After a certain period of time spent in the steady state, the
network is refreshed by entering the set-up phase again.

1 Due to space limitation, detailed discussion of the OCO method is not
possible in this paper. Interested readers may contact the authors to obtain
the detailed algorithms for the various phases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

OCO has 4 phases: position-collecting, processing, tracking, and
maintenance.
The position-collecting phase involves the base’s collecting
positions of all the nodes in the network. The processing phase
involves the base’s cleaning up the redundant nodes, detecting the
border nodes, and routing. The tracking phase detects all objects
coming from outside the perimeter of the sensor network.
Normally, only the sensor modules of the border nodes are ON.
When a border node detects an object, it periodically sends its
position information to the base by using its father’s ID. When it
has lost the object, it sends a message to turn on the sensor
modules of all its neighbors2. If a neighbor detects the object, it
will continue sending its position to the base and, right after it has
lost the object, it turns the sensor modules of all its neighbors to
ON, and so on. If activated neighbors detect nothing, they
automatically turn the sensor module OFF after a short interval.
This way, the objects are tracked as long as it remains within the
network perimeter. The maintenance phase is started when the
network has a dead node (for example, the node has run out its
energy). In this case, the base just deletes the dead node from the
list, and then re-organizes the network by starting the 4-step
procedure over.

3. SIMULATION AND EVALUATIONS
3.1. Models and Tools
The simulation models that we have built to test the performance
of the three methods are based on [3], and consist of three sub-
modules: a sensor-node model, a sensor-network model, and an
intruder-object model.
The sensor-node model is used to simulate a sensor node. It
includes three layers: application, MAC, and physical layer. It
contains several modules, including the coordinator module, the
radio module, the sensor module, and the energy module, as
illustrated in Figure 1. Physical layer represents the interfaces
with other nodes. The MAC layer represents pre-processing
packet layers. In the simulations, the performance of the MAC3
layer is not considered.

Figure 1: A sensor-node model

The sensor-network model contains a set of sensor nodes, and is
used to represent the sensor network. Two nodes can
communicate with each other if the distance between them is
smaller than their communication radius.
The intruder-object model represents the intruding object.
Although being similar to the sensor node, an object has only two
layers: the application layer on top of the physical layer.

2 It is assumed that the delay time to activate the neighbors is smaller than
the value of the sensing radius divided by the speed of the intruding
object.
3 The MAC layer module is actually disabled to speed up the simulation.

The tools used to implement the models include C# (for
processing programs), OMNeT++ (for simulation), and MatLab
(for analyzing and evaluating simulation results).

3.2. The Metrics
Four metrics are used in evaluating the methods:
• Energy consumption measures the total energy consumed by

the sensor nodes after the simulation is started.
• Accuracy is the number of detected positions of the intruding

object(s) in a given method, compared to the number of
detected positions in the DC method, which is used as the base
of comparisons [4].

• Cost per detected position is the ratio between energy
consumption and the number of detected positions.

• Time before the first dead node is the time when the first node
of the network runs out of energy [2].

3.3. Simulation Environment
The simulation environment is built as an area of 640x540. The
number of nodes in the network is 200, 250, 300, 350, 400, 450,
500,550, 600, 650,700, 750, 800, 850, 900, 950, and 1000 with 2J
(Joule4) of energy for each node. In each situation, nodes and the
base station are placed randomly. The sensing radius and the
communication radius of the nodes are set as 30 and 60
respectively. Table 1 is a summary of the respective consumed
energy, with respect to various tasks.

Create/Receive a data message
Create/Receive a signal message

100 µJ
3 µJ

Send a data message (d<= 60m)
Send a signal message (d<=60m)

820 µJ
26 µJ

Send a message (d > 60m) 100 µJ + 0.1*d^2
Sensor board (full operation) 66 µJ/s
Radio board (idle/receive mode) 100 µJ/s

Table 1: Energy consumption for various tasks

Figure 2: Sample simulation environment of DC

4 A Joule (J) is the unit for measuring quantity of energy.
1 Watt = 1 Joule/second

Figures 2, 3, and 4 are the simulation screen shots of the sensor
networks constructed respectively by the three methods. The big
red circle in the figures represents the base, and the red dot with
arrows pointing out represents the intruder object. In Figure 3
(LEACH), the blue nodes are the cluster heads. In Figure 4
(OCO), the yellow nodes represent the border nodes, and the
orange nodes the activated nodes.

Figure 3: Sample simulation environment of LEACH

Figure 4: Sample simulation environment of OCO

4. RESULTS
Results from two different cases are presented in this section. In
the base case, the three methods are evaluated in environments
with no intruder object present; in the second case, one intruder is
present in the simulation environments.

4.1. The Base Cases: no intruder objects
In the base case, two metrics, Energy consumption and Time
before the first dead node, are measured. The results of running
the three methods in 9000 seconds of simulations are shown in
Figures 5 and 6. As shown in figure 5, when the number of nodes
increases, the energy dissipation of OCO goes to a constant,
delivering much better result than the other methods. The only
exception is when the number of node is 200, which is the only
case when OCO’s value is higher. The reason is that, when the
number of node increases, the size of the border in OCO decreases
(less gaps between border nodes and straighter border line). The
minimum is reached at 950.

Figure 5: Energy Consumption (no intruder)

Figure 6: Time before the first dead node (no intruder)5

Time before the first dead node, as illustrated in Figure 6, shows
that OCO lasts longer than LEACH in all cases. Although DC
shows superior performance in this regard, it is not a practical
method, and is thus used mainly as a base of comparison.

4.2. The Tracking Cases: one intruder object
In this section, the simulation results are divided into two cases.
Each of the cases represents the collected metrics given a
particular path of the moving object (Figure 7), with the moving
speed being 10 points/s. The paths are created by drawing images,

5 Value of 1,000 means there is no dead node in the network during the
9000 seconds of simulation.

which is then read by a Mathlab script to generate text files of all
points belonging to the paths. In each of the cases, four figures are
presented to show the results with respect to the four metrics.

Case 1: Diagonal zigzag path Case 2: Along-the-border path

Figure 7: The paths for different cases

4.2.1. Results of Case 1
The path used in this case represents the scenario where the
moving object moves along a zigzag course diagonally (lower left
to upper right) across the sensor network (Figure 7, case 1).

Figure 8: Energy consumption of the three methods6
In Figure 8, OCO delivers more stable results than the others in all
cases except when the number of nodes is smaller than 300. Our
explanation is that, in those cases, there are very few nodes in the
area, so most of the nodes are ON. It means OCO is close to DC
or LEACH in terms of the number of ON nodes; however, OCO
has to spend energy in colleting node positions. That is why OCO
would consume more energy than the others when the number of
nodes is less than 300.
As shown in Figure 9, the accuracy of OCO is compatible to DC
in most of the cases. LEACH, although showing very good results
when the number of nodes is higher than 700, exhibits less stable
results when the number of nodes is lower than 700.
Figure 10 shows the cost associated with each of the detected
object positions. OCO’s cost is the lowest in all the cases when
the number of nodes is greater than 300. The cost of LEACH in
general increases relative to the number of nodes.
As shown in Figure 11, the time before the first dead node appears
to be “fluctuating” across the cases, because, depending on the
relative distance between the intruding object and the base, one of
the nodes may run out of energy early. Still, as shown in Figure
11, an OCO network lasts longer than LEACH in all cases.

6 The “spikes” exhibited by DC and LEACH at 600 and 1,000
were caused by the fact that the base station in those cases were
far from the moving paths, resulting in more energy consumption.

Figure 9: Accuracy of the three methods

Figure 10: Cost per detected point of the three methods

Figure 11: Time before the first dead node of the three methods

4.2.2. Results of Case 2
The path used in this case represents the scenario where the
moving object moves approximately along the border of the
sensor network, starting at the upper left corner toward the lower
right corner, and then coming back to the upper left corner (Figure
7, case 2). Results of case 2 are compatible with case 1. As
shown in Figure 12, energy consumption of OCO is smaller than
the others when the number of node is greater than 300.

Figure 12: Energy consumption (Case 2)

The accuracy of OCO reaches 100% in almost all cases, as shown
in Figure 13. LEACH’s accuracy reaches 100% in cases when the
number of nodes is greater than 750.

Figure 13: Accuracy (Case 2)

Figure 14: Cost per detected point (Case 2)

In Figure 14, OCO is shown to have spent the least energy with
respect to each of the detected points, in almost all cases. In
particular, at 800, OCO’s cost is the lowest while ensuring almost
100% accuracy (Figure 13).
Similar to case 1, the results with respect to time before the first

dead node (Figure 15) are somewhat ‘fluctuating’. OCO still
exhibits better longevity than LEACH across all cases.

Figure 15: Time before the first dead node (Case 2)

5. SUMMARY AND FUTURE WORK
Based on our simulation study, OCO appears to consume less
energy than the others, while maintaining maximum accuracy.
One potential extension of our work is to evaluate the methods
under different scenarios, for example with multiple intruding
objects. In addition, we plan to add security features into OCO,
since the sensor network usually operates in hostile environments.

6. ACKNOWLEDGMENTS
The authors are partially supported by the Univ. of Houston –
Clear Lake (FRSF #859), the Institute for Space Systems
Operations (ISSO), and the National Science Foundation (DUE
0311592).

7. REFERENCES
[1] Guo, Weihua, Zhaoyu Liu, and Guangbin Wu (2003). “An

Energy-Balanced Transmission Scheme for Sensor
Networks”. Dept. of Software and Information Systems -
Univ. of North Carolina at Charlotte. Retrieved 9/8/2005 at
http://www.cens.ucla.edu/sensys03/proceedings/p300-
guo.pdf.

 [2] Heinzelman, Wendi R., Anantha Chandrakasan, and Hari
Balakrishnan (2000). “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks”. Proc. of the
Hawaii International Conference on System Sciences, Maui,
Hawaii. Retrieved 9/8/05 at
http://academic.csuohio.edu/yuc/mobile03/0403-
heinzelman.pdf

[3] Mallanda, C., A. Suri, V. Kunchakarra, S.S. Iyengar, R.
Kannan, and A. Durresi (2005). “Simulating Wireless Sensor
Networks with OMNeT++”. Dept. of Computer Science,
Louisiana State Univ. Retrieved 9/8/2005 at
http://bit.csc.lsu.edu/sensor_web/final_papers/SensorSimulat
or-IEEE-Computers.pdf

[4] Pattem, Sundeep, Sameera Poduri, and Bhaskar
Krishnamachari (2003). “Energy-Quality Tradeoffs for
Target Tracking in Wireless Sensor Networks”. Dep. of
Electrical Engineering and Dep. of Computer Science, Univ.
of Southern California. Retrieved 7/10/05 at http://www-
scf.usc.edu/~pattem/PattemKrishnamachari_Tracking.pdf

