
Thesis Proposal (DRAFT, 1-5-2003):

Enhanced Security Mechanisms for Multi-party Web Services Applications

1 Introduction

Web services represent an important evolutionary step in building Internet-based distributed applications. At a minimum, web services can be any piece of software that makes itself available over the Internet using standardized web services messaging system and interface [1]. XML, eXtensible Markup Language, lies at the core of web services interoperability, and enables it to provide a language-neutral and platform-independent way of linking applications [4].
But these characteristics also present new security threats and challenges. Security is being considered as the biggest roadblock facing widespread implementation of web services technologies.

The security solutions that are commonly implemented in today’s web-based applications, such as SSL (Secure Socket Layer), do not provide a sufficient security infrastructure for web services [6]. In contrast to web site applications that require a security solution between the client browser and the web server, the web services applications can involve calling one or more intermediary services, thus requiring more comprehensive security solution. If a transaction passes through intermediary systems, such as a credit verification system, it poses additional security problems of passing the user credentials and maintaining data integrity.

The web applications that involve calling multiple intermediary web services as part of an overall transaction are referred to as multi-party web services. For instance, making a call to a service providing insurance quotes may in turn involve calls to multiple insurance provider services before returning a response to the end user. In such cases, when the data is received and forwarded on by an intermediary, both the integrity of the data and security of information that flows with it may be lost [2]. Also, the user credentials cannot be easily passed through each stop in the transaction chain. To solve the security issues in the above scenarios, web service security architecture requires mechanism that provides security for the entire transaction.

Several specifications have been proposed for web services security. The most important is the “WS-Security” [1] specification by IBM, Microsoft and VeriSign, which aims to provide message integrity, message confidentiality, and message authentication for the web services. Most of these specifications are still in form of drafts submitted to standardization organizations.

This thesis proposal aims to investigate and analyze the security issues posed by multi-party web services. It would involve designing and implementing a secure multi-party web service application using some of the proposed specifications that provides end-to end security. The sample application will be analyzed & tested using different security tokens under several possible scenarios. Security vulnerabilities and performance overheads will be monitored for different mechanisms used. Based on the entire study and analysis of different scenarios, enhanced security mechanisms would be suggested for multi-party web services.

2 Background

Remote Procedure Calls (RPC) has been in use for some time for communicating between distributed applications. Other distributed application protocols, such as DCOM, RMI and CORBA, were not based on widely supported common protocols and failed to provide a standard mechanism for use over the Internet. Wide acceptance of standard web-services protocols by industry giants, including IBM, Microsoft, Oracle, Sun, and SAP, has made web services a potential successful distributed computing framework. XML provides a common language for describing Remote-Procedure-Calls, web services interfaces, and web service directories [11]. The rest of this section describes the basic architecture and protocols of web services, an introduction to web security, a survey of security technologies, and an overview of web-service-related terminology.

2.1 Web-services protocols

Web services are self-contained, modular applications that can be described, published, located, and invoked over the Internet. Web services architecture then requires three fundamental operations: publish, find, and bind. These operations along with the actors involved are shown in Figure 1 [5].

[image: image6.png]ws
SocureConveration || WS-Federation | Ws-Authorization
m e ey

'SOAP Foundation

Figure 1: Web Services Actors and Operations [5]
As depicted in the figure, a service provider creates a web service and its service definition and then publishes it with a service registry based on a standard called the Universal Description, Discovery, and Integration (UDDI) specification. Once a service is published, a service requester may find the service via the UDDI interface. The UDDI registry provides the service requester with a service description based on WSDL, Web Service Description Language. The service requester may then use this information to directly bind to the service and invoke it. All communication in the above scenario is based upon the standard messaging protocol SOAP, Simple Object Access Protocol. These widely accepted standard protocols: SOAP, WSDL, and UDDI are described further in the remaining of this section.

2.1.A SOAP (Simple Object Access Protocol)

Simple Object Access Protocol (SOAP) [4] is an XML-based protocol that enables easy exchange of messages between applications. Although SOAP can be used in a variety of messaging systems and can be delivered via a variety of transport protocols, the main focus of SOAP is Remote Procedure Calls (RPC) transported via HTTP. SOAP is a high-level protocol that defines only the message structure and a few simple rules for message processing. SOAP is platform independent, and therefore enables diverse applications to communicate with one another providing ideal messaging protocol for web services. As shown in Figure 1, messages passed between the service requester, the service provider, and the service registry can be transmitted as SOAP messages.
2.1.B WSDL (Web Services Description Language)

Web Services Description Language (WSDL) [17] represents the service description component (see Figure 1) within the web service architecture. In a nutshell, WSDL is an XML grammar for specifying a public interface for a web service. This public interface may include information on all public functions, data type information, binding information and address information for locating the specified service. WSDL includes built-in extensions for describing SOAP services.

2.1.C UDDI (Universal Description, Discovery, and Integration)

Universal Description, Discovery, and Integration (UDDI) [11] represent the service discovery component within the web services architecture. It represents a technical specification for publishing and finding businesses and web services. At its core, UDDI consists of two parts. First, UDDI is a technical specification for building a distributed directory of businesses and web services. Data is stored within a specific XML format, and the UDDI specification includes API details for searching existing data and publishing new data. Second, the UDDI Business Registry is a fully operational implementation of the UDDI specification. It also enables any company to register themselves and their services. As shown in Figure 1, the service provider may use UDDI to specify and publish its services, and the service requester may use UDDI to find the needed web services.
2.2 Web Security Basics [6]
· Authentication is an element of security that provides the means to verify the identity of entities participating in a communication or to verify the origin of a document. Users are typically authenticated by a username and password or similar mechanisms. When authenticated, a session token is usually placed into the user's browser (stored in a cookie).

· Access control is an element of security that permits or denies access to applications, information, or other resources, based on parameters including, but not limited to, the identity of the source and destination.

· Authorization is the act of checking to see if a user has the proper permission to access a particular file or perform a particular action, assuming that the user has successfully authenticated himself. Authorization is very much credential focused and dependent on specific rules and access control lists (ACL).

· Data Integrity is the protection of information from tampering, forgery, or accidental changes. It ensures that messages are accurately received as they were sent and information is not altered by computer errors or non-authorized individuals.

· Non-repudiation is an element of security that provides proof of transmission and receipt. It ensures that parties involved in a transaction cannot deny their role in the exchange.

2.3 Survey of Security Technologies

a) Symmetric, or Secret Key Cryptography
Symmetric cryptography [6] uses a single private key to both encrypt and decrypt data. Any party that has the key can use it to encrypt and decrypt data. They are also referred to as secret key encryption. Block ciphers such as DES (Data Encryption Standard) are examples of symmetric cryptographical protocols. Symmetric cryptography algorithms are typically fast and are suitable for processing large streams of data.

The disadvantage of symmetric cryptography is that it presumes two parties have agreed on a key and been able to exchange that key in a secure manner prior to communication. This is a significant challenge. Symmetric algorithms are usually mixed with public key algorithms to obtain a blend of security and speed.

b) Asymmetric, or Public Key Cryptography
Public-key cryptography is also called asymmetric encryption [6]. Each user has a pair of private and public keys. The private key is only known to the user himself, while the public key can be made public to anyone who might be interested in communicating with the particular user. Both the public key and the private key are mathematically linked; data encrypted with the public key can be decrypted only by the private key, and data signed with the private key can only be verified with the public key. The public key can be published to anyone. Both keys are unique to the communication session.

c) Digital Signatures & Hash Values
Public-key and private-key algorithms [6] can also be used to form digital signatures. A user signs a document using his/her private key. The recipient of the message then uses the user’s public key to decrypt the message. Since only the user himself owns the private key, the successful decryption of the message indicates the authenticity of the message. Digital signatures authenticate the identity of a sender (if you trust the sender's public key) and protect the integrity of data. You may also hear the term MAC (Message Authentication Code), referring to digital signatures.

Hash algorithms are one-way mathematical algorithms that take an arbitrary length input and produce a fixed length output string. A hash value is a unique and extremely compact numerical representation of a piece of data. MD5, for instance, [Add a reference and a brief description for MD5] produces 128 bits of output. It is computationally improbable to find two distinct inputs that hash to the same value (or ``collide''). Hash functions have some very useful applications. They allow a party to prove they know something without revealing what it is, and hence are seeing widespread use in password schemes. They can also be used in digital signatures and integrity protection.

d) X.509 Certificates

Basically, public key cryptography requires access to users' public keys. In a large-scale networked environment it is impossible to guarantee that prior relationships between communicating entities have been established or that a trusted repository exists with all used public keys. Certificates were invented as a solution to this public key distribution problem. A public-key certificate is a digitally signed statement from one entity, saying that the public key (and some other information) of another entity has some specific value. Now a Certification Authority (CA) can act as a trusted third party. CAs are entities (e.g., businesses) that are trusted to sign (issue) certificates for other entities. It is assumed that CAs will only create valid and reliable certificates as they are bound by legal agreements. The X.509 standard [6] defines what information can go into a certificate, and describes the data format. X.509 is one of the most popular formats for digital signatures used today.

As shown in Figure 2, a CA can act as the Security Token Service [2]. Here, the requester issues a request to the service and includes a reference to the security token (certificate) and provides proof-of-possession. The Web service uses the provided information to obtain the security token from the token store service and validate the proof. The Web service trusts the security token, so the request is processed and the response is returned.

[image: image2.png]Web
Service

Figure 2: Simple authentication using a trusted party [2]

e) SSL/TLS

The Secure Socket Layer protocol (SSL) [6] is probably the most popular security protocol and is built in to all commercial web browsers and web servers. IETF (Internet Engineering Task Force) has upgraded SSL and renamed it as TLS (Transport Layer Security). SSL /TLS can provide three security services for the transport of data, i.e., authentication, confidentiality and integrity. SSL uses both public key and symmetric cryptography. SSL certificates are X.509 certificates. A certificate is a public key that is signed by another trusted user (with some additional information to validate that trust).

SSL has two major modes of operation. The first is where the SSL tunnel is set up and only the server is authenticated; the second is where both the server and the client are authenticated. In both cases the SSL session is set up before the HTTP transaction takes place. SSL/TLS provides no additional security once data has left the IP stack (transport layer) on either end of a connection. Any security flaws at application level environments, which use SSL for session transport, are in no way abetted or mitigated through the use of SSL.

f) Kerberos Tickets

Kerberos [6] allows a client to exchange private information with a server across an open network such as the Internet. A unique key, called a ticket, is assigned to each client that authenticates to the network using his or her Key and password with special ticket management software. The ticket, instead of a client’s Key and password, is embedded in messages and identifies the client to various Kerberos-enabled services when the client attempts to connect to them. The Key and password are never sent across the network.

g) XML Signatures

XML signatures [7] are digital signatures designed for use in XML transactions. The standard defines a schema for capturing the result of a digital signature operation applied to arbitrary (but often XML) data. Non-XML-aware digital signatures, such as the public key digital signature used with X.509 certificates, are able to provide basic security such as authentication, data integrity, and support for non-repudiation to the data that they sign. However, unlike non-XML digital signature standards, XML signature has been designed to both account for and take advantage of the Internet and XML.

A fundamental feature of XML Signature is the ability to sign only specific portions of the XML tree rather than the complete document. This flexibility will also be critical in situations where it is important to ensure the integrity of certain portions of an XML document, while leaving open the possibility for other portions of the document to change. Consider, for example, a signed XML form delivered to a user for completion. If the signature were over the full XML form, any change by the user to the default form values would invalidate the original signature.

An XML signature can sign more than one type of resource. For example, a single XML signature might cover character-encoded data (HTML), binary-encoded data (e.g., a JPG), XML-encoded data, and a specific section of an XML file.

h) XML Encryption

Standard SSL using HTTPS allows for point-to-point data encryption between service requestors and service providers. However, in many cases, the service provider may not be the ultimate destination for the message. A service provider may act as a service requestor, sending pieces of information to multiple services. The XML Encryption [8] standard allows encryption of portions of the message allowing header information to be used for routing purposes while leaving the sensitive payload encrypted.

i) XML-based security token (SAML format)

Security Assertion Markup Language (SAML) [8] provides a standard XML syntax to exchange security information using XML schemas. SAML complements other web services standards that lack built-in security. SAML incorporates industry-standard protocols and messaging frameworks, such as XML Signature, XML Encryption, and SOAP. SAML is also serving as a building block for other security standards. XML-based security token has been proposed to be used with WS-Security [1] specifications. Since SAML format is described in a standalone specification, their usage with respect to the WS-Security specification could be quite efficient.

2.4 Web-Service Related Terminology

Some of the technical terms used in this document were originally defined in the WS-Roadmap paper [2] and are summarized below:

· Web service -- The term "web service" is broadly applicable to a wide variety of network based application topologies. In this document, we use the term "web service" to describe application components whose functionality and interfaces are exposed to potential users through the application of existing and emerging Web technology standards, including XML, SOAP, WSDL, UDDI, and HTTP. In contrast to Web based applications, web services are services that offer computer-to-computer interactions, via defined formats and protocols, in a platform-independent and language-neutral manner.

· Security Token -- We define a security token as a representation of security-related information (e.g., X.509 certificate, Kerberos tickets and authenticators, mobile device security tokens from SIM cards, username, etc.). Security tokens can be categorized into two types: unsigned security tokens (such as usernames) and signed security tokens.

· Signed Security Token -- We define a signed security token as a security token that contains a set of related claims (assertions) cryptographically endorsed by an issuer. Examples of signed security tokens include X.509 certificates and Kerberos tickets.

· Subject -- The subject of the security token is a principal (e.g., a person, an application or a business entity) about which the claims expressed in the security token apply. Specifically, the subject, as the owner of the security token, possesses information necessary to prove ownership of the security token.

· Proof-of-Possession -- We define proof-of-possession to be information used in the process of proving ownership of a security token or set of claims. For example, proof-of-possession might be the private key associated with a security token that contains a public key.

· Intermediaries -- As SOAP messages are sent from an initial requester to a service, they may be operated on by intermediaries that perform actions such as routing the message or even modifying the message. For example, an intermediary may add headers, encrypt or decrypt pieces of the message, or add additional security tokens. In such situations, care should be taken so that alterations to the message do not invalidate message integrity, violate the trust model, or destroy accountability.

3 Problem definition

Web Services, being diverse applications running on interconnected network hosts, are exposed to a plethora of computing security hazards, which present themselves as threats to the well being of the providers, intermediaries as well as consumers of such services. Hildreth [13] discusses some of the characteristics of web services as follows:
· Openly accessible over Internet

· Use XML messages for communication
· Loosely-coupled architecture

· Involve one or more intermediaries
· Heterogeneous in implementation technologies

Web services provide a standard interface accessible over the Internet. This XML based interface is described in the public registry thus exposing the methods of the service to access control vulnerabilities. Communication over the standard web protocols using XML messages introduces the problems of message integrity and confidentiality. Loosely coupled architecture makes it imperative that services have a mechanism for establishing identity and trust. Further the involvement of intermediaries, such as a credit verification system, poses additional security problems of passing the user credentials and maintaining data integrity. Web service applications can also be implemented using heterogeneous systems and therefore introduce problems of interoperability of security protocols.

This thesis will study and analyze the above characteristics for security challenges posed in web services interactions. Specifically, it will focus on security problems and issues with web services that involve one or more intermediaries, i.e., the multi-party web services applications. For instance, making call to a service providing insurance quotes may in turn involve calls to multiple insurance provider services before returning a response to the end user. In such cases, when the data is received and forwarded on by an intermediary, both the integrity of the data and security of information that flows with it may be lost [2]. The user credentials also cannot be easily passed through each stop in the transaction chain. These security problems will form the focus area for the thesis.
One of the most common security protocols is the SSL/TLS, which provides transport level security for web services applications. SSL offers several security features including authentication, data integrity and data confidentiality and ensures point-to-point secure sessions between the two parties, but it does not provide end-to-end security required in case of multi-party web services. Figure 3 depicts the limitation of point-to-point security context, which provides security only between two points [2]. This security context is insufficient to provide security in cases where an intermediary is involved in the system.

[image: image3.png]‘Security Context Security Context

Requester Intermediary

Figure 3. Point-to-point configuration [2]

When data is received and forwarded on by an intermediary beyond the transport layer, both the integrity of the data and security information that flows with it may be lost [2]. This potential problem forces any upstream message processors to rely on the security evaluations made by previous intermediaries and to completely trust their handling of the content of messages.

If a transaction passes through intermediary systems, such as credit verification system or a smart gateway, it is difficult to detect whether the data was maliciously altered. Additionally, user credentials cannot be easily passed through each stop in the transaction chain, potentially hindering the success of the transaction and precluding the ability to log which client application initiated the transaction at each step in the process. To solve the security issues in the above scenarios, web service security architecture requires adequate mechanism that provides end-to-end security [2]. Figure 4 depicts the end-to-end security context that ensures the security for the entire web service application covering the intermediaries along with the service requestor and provider.

[image: image4.png]Security Context

Requester

Intermediary

Figure 4. End-to-end configuration [2]

The security issues involved in case of multi party web services requiring end-to-end security have been mentioned in the “WS-Security” [1] as well as other specifications. Some web service security scenarios have been discussed in these specifications, which, however, are designed to be used as the basis for the construction of a wide variety of security models including PKI, Kerberos, and SSL. They provide support for multiple security tokens, multiple trust domains, multiple signature formats, and multiple encryption technologies. Being flexible high-level documents, these specifications do not provide detailed analysis of any particular implementation strategy.

The problems relating to security vulnerabilities, which would be introduced in complex WS implementation using different security tokens, have not been sufficiently addressed. The thesis aims to address these problems. One of the major issues to be researched would be efficient integration and usage of PKI and Kerberos models with XML-Signature & XML Encryption under different scenarios and need of additional XML-based tokens.

Specific to multi-party web services, new implementation challenges such as “secure cross-domain invocation” that would require mapping of credentials will be analyzed. Further, coordination mechanism [3], which would have to handle security context and manage credential lifespan in such services, will be addressed.
Checking for security vulnerabilities and performance overheads are also important part of addressing the above problems. After comprehensive analysis and testing, a matrix of implementation strategies would emerge. Based on further comparative analysis and investigation of the matrix features, enhanced security mechanisms will be suggested for multi party web services.

4 Related Work

4.1 Proposed Web Service Security Specifications

The most important research work in this area is clearly “WS-Security” Specification from IBM, Microsoft, and VeriSign [1]. The three companies jointly developed the new specification, known as WS-Security, and have submitted it to two major standardization organizations: W3C, World Wide Web Consortium, and the OASIS, Organization for the Advancement of Structured Information Standards.
WS-Security describes enhancements to SOAP messaging to provide quality of protection through message integrity, message confidentiality, and single message authentication. These mechanisms can be used to accommodate a wide variety of security models and encryption technologies.

WS-Security also provides a general-purpose mechanism for associating security tokens with messages. No specific type of security token is required by WS-Security. It is designed to be extensible (e.g., support multiple security token formats). For example, a client might provide proof of identity and proof that they have a particular business certification.

Additionally, WS-Security describes how to encode binary security tokens. Specifically, the specification describes how to encode X.509 certificates and Kerberos tickets as well as how to include opaque encrypted keys. It also includes extensibility mechanisms that can be used to further describe the characteristics of the credentials that are included with a message.

[image: image1.png]FIND
WSDL + UDDI

SERVICE

REQUESTER

SERVICE
DESCRIPTION

SERVICE

REGISTRY

PUBLISH
WSDL + UDDI

(seRvICE

SERVICE

D PROVIDER

SERVICE
DESCRIPTION

Fig 5: Web Services Security Specifications [2]

As depicted in Figure 5, initial protocols in the WS-Security specifications consist of WS-Policy, WS-Trust, and WS-Privacy [2]. The first versions of these protocols have been published as public specifications.
· WS-Policy describes the capabilities and constraints of the security (and other business) policies on intermediaries and endpoints (e.g., required security tokens, supported encryption algorithms, privacy rules).

· WS-Trust describes a framework for trust models that enables web services to securely interoperate.

· WS-Privacy describes a model defining how web services and requesters would state privacy preferences and organizational privacy practice statements.

Also depicted in Figure 5, there exist higher-level specifications that will be addressed in the future and may be related to issues of multi party web services:

· WS-SecureConversation will describe how to manage and authenticate message exchanges between parties, including security context exchange and establishing and deriving session keys.

· WS-Federation will describe how to manage and broker the trust relationships in a heterogeneous federated environment, including support for federated identities.

· WS-Authorization will describe how to manage authorization data and authorization policies.

4.2 A Proposed Architecture and Roadmap for WS Security

IBM Corporation and Microsoft Corporation has jointly published a white paper that describes a proposed strategy for addressing security within a web service environment [2]. It aims to provide a comprehensive model of security functions and components for web services through the integration of currently available processes and technologies with the evolving security requirements. It tries to unify the range of security technologies available by abstracting the functional requirements of application security from specific mechanisms employed.

It defines a security model that supports, integrates and unifies several popular security models, mechanisms, and technologies (including both symmetric and public key technologies) in a way that enables a variety of systems to securely interoperate in a platform- and language-neutral manner. It also describes a set of specifications and scenarios that show how these specifications might be used together.

4.3 WS-Coordination & WS-Transaction

The current set of web service specifications based on SOAP/WSDL defines protocols for web service interoperability. Web services increasingly tie together a large number of participants forming large distributed applications. The resulting activities can be complex in structure, with complex relationships between their participants. WS-Coordination [3] describes an extensible framework for providing protocols that coordinate the actions of distributed web services applications.

The framework defined in this specification enables an application service to create a context needed to propagate an activity to other services and to register for coordination protocols. The framework enables existing transaction processing, workflow, and other systems for coordination to hide their proprietary protocols and to operate in a heterogeneous environment.

WS-Transaction [3] specification describes coordination types that are used with the extensible coordination framework described in the WS-Coordination specification. It defines two coordination types: Atomic Transaction (AT) and Business Activity (BA). Developers can use either or both of these coordination types when building applications that require consistent agreement on the outcome of distributed activities.

4.4 Survey of Work Related to Multi-party Coordination

4.4.A Open Grid Services Architecture (OGSA)

The effort of the OGSA research community is trying to address the evolutionary pressures generated by the growing new requirements for distributed application development and deployment [9]. Such problems have been for some time a central concern of the developers of distributed systems for large-scale scientific research. Work within this community has led to the development of “Grid technologies”.

Building on concepts and technologies from the Grid and web services communities, the OGSA architecture defines uniformly exposed service semantics (the Grid service), defines standard mechanisms for creating, naming, and discovering transient Grid service instances, provides location transparency and multiple protocol bindings for service instances, and supports integration with underlying native platform facilities.

4.4.B Computer Supported Cooperative Work (CSCW)

The design of computer technologies for the effective support of cooperative work has been the focus of the CSCW community [10]. In recent years many exciting new areas of CSCW research have emerged with the penetration of networked communication technologies. There have been recent research and design initiatives with regard to communication technologies for the home, for communications between family and friends, and in the arts and entertainment industries. A specific area, Place-based collaborative environments (PBCE), facilitates group communication and information sharing among people who are not collocated. Such environments usually present a virtual place, using a metaphor such as a building or rooms, where people can meet, conduct conversations and share documents, among other things.

4.5 Overview of Related Work

The research specifications discussed in this section are mostly in form of working-group drafts, some of which have been submitted to standards body (WS-Security) while some others are currently in progress (OGSA) and some are proposed for the future (WS-SecureCommunication). The research area of the thesis is mainly focused on the problems in the implementation of the proposed technologies and security tokens. Hence, the research work is complimentary to the current research and the research focus does not overlap with the related research. The thesis research would use several of these draft proposals for the sample test application. At the end of the thesis, useful suggestions are expected that could be contributed to the open source working groups in related area.

5 Research Plan

5.1 Secure Multi-party Web Service Application: Design & Implementation

A standard web services application is currently based on the following three protocols:

· SOAP: Simple Object Access Protocol

· WSDL: Web Services Description Language

· UDDI: Universal Description, Discovery, and Integration

These protocols would be used as standards to develop a sample web service application. The sample application will aim to provide a secure online document storage, search and editing system. A provider service will be implemented that enables access to these facilities. A requester service will then be implemented to call its services. Communication and interaction between these two services will be tested. After successful execution of these services, an intermediary service will be added to the application to provide appropriate multi-party functionality to the system. Once the application framework is ready, the main task of implementing and testing security technologies will be undertaken.

The main security technologies and security tokens that will be investigated and implemented include:

· SSL/TLS: Secure Socket layer/ Transport Layer Security

· PKI: Public Key Infrastructure

· X.509 Certificate

· Kerberos Tickets

· XML Signatures

· XML Encryption

· XML based token (SAML-format)
The major specifications that would provide framework for implementation include:
· WS-Security
· Security in a Web Services World: A Proposed Architecture and Roadmap
· WS-Coordination

The implemented application will ensure sufficient security to construct key exchange, authentication, authorization, and secure communication mechanisms for end-to-end security.

5.1.A Software Environment Required

The Java programming language will be the major language used for coding the application. JWSDP, Java Web Services Developer Pack [14], will be required as the major software environment for the implementation. The Java APIs that would be used include:

· The Java API for XML-based RPC (JAX-RPC), which is the Java API for developing RPC-based web services that can be called by a remote client over the Internet.

· The Java API for XML Messaging (JAXM) provides a standard way to send XML documents over the Internet from the Java platform and is based on the SOAP 1.1 and SOAP with Attachments specifications.

· The Java API for XML Registries (JAXR) provides a convenient way to access standard web service registries over the Internet. These registries are often described as electronic yellow pages because they contain listings of web services available over the Internet.

Figure 6 shows the typical use of Java APIs in the web services scenario, where JAXR is used to publish and discover the web service and JAX-RPC is used to access and use the services.

[image: image5.png]

Figure 6: Java APIs used for Web Services [14]

Web browser support for the application will be provided using JSP and Java servlets. Basic steps involved in developing the application will include creating the Web Service business logic, deploying the Java class to the SOAP server, and generating client and intermediary access classes.

5.1.B Operating System Requirements

The available operating systems in the School should be sufficient for the research study provided the required privileges are available for installing, configuring, and running the required software and applications. Major application development will be done using Windows Operating System (preferred platform: Windows 2000). Administrator account would be required on the main Windows system used for application development. Unix/Linux system would be required to check for heterogeneous interoperability considerations in the research.

5.2 Cryptanalysis /Threat detection

The sample application proposed above would put to many possible security attacks to analyze the effectiveness of the security tokens & technologies used. Cryptanalysis would involve attempts to break the security tokens used, including X.509 certificates, Kerberos tickets along with XML-Signature & XML-Encryption and other tokens.

To check for the security vulnerabilities in the application, the web service has to be understood as a WS session comprising a WS server (a web service endpoint), a WS client (a consumer), and one or more WS channels (of communication). Between a WS client and its WS server along a WS channel, there may be zero, one, or multiple WS intermediary services. They -- the WS server, client, and intermediaries – can be referred to as WS nodes [12] for testing purposes. The possible attacks can be to a WS node (of any kind), a WS channel (of single or multiple hops), or a WS session.

5.3 Performance Analysis

Security service of any kind has significant performance overhead; more so in case of distributed web applications like web services. Performance analysis will be undertaken for each of the testing scenarios implemented in the sample application. Results will be quantified in practical terms and graphs will be plotted to display the overhead of using particular protocols/security tokens. The time requests and other factors will be measured using the standard web testing tools. Effort would be made to use open-source tools for all testing and performance analysis.

Lightweight tools such as the “EasyWebLoad” [16], which is a basic web site load-testing tool, would be used for simple testing tasks. This would be followed by more advanced tools such as the “Test Perspective Load Test” [16], a comprehensive load testing service for Internet applications that utilizes load-generating infrastructure on the Internet and conducts realistic load and stress tests. Efforts would be made to validate performance of entire web services application and provide detailed reporting of the test results.

6 Tentative Research Timeline

	Months
	Intended Activity

	Jan 2003
	Implementation of a basic multi-party web service +

Detailed study of WS-Security Specification

	Feb 2003
	Adding SOAP security features to the application based on the WS-Security + Adding basic SSL security

	March 2003
	Study & implementation of PKI -X.509 certificates/ Kerberos signed tokens + Study of the “Roadmap paper”

	April 2003
	Study & Implementation of XML Signature & XML Encryption + XML Based tokens (SAML)

	May 2003
	Study & Implementing Coordination features to the application (WS-Coordination, OGSA, CSCW)

	June 2003
	Cryptanalysis/ Testing Security Tokens Combinations, Testing Security Vulnerabilities & Performance overheads

	July / August 2003
	Aggregation and Analysis of Research results + Writing of the Master Thesis

References

[1] Chris Kaler (Editor). WS-Security, Version 1.0. An IBM, Microsoft and VeriSign joint specification. April 5, 2002.

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
[2] IBM and Microsoft. Security in a Web Services World: A Proposed Architecture and Roadmap. A joint security white paper. April 7, 2002. Version 1.0.
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
[3] Felipe Cabrera (Microsoft), et. al. Web Services Coordination (WS-Coordination). August 9, 2002. A joint specification by IBM, Microsoft and BEA Systems.
http://www-106.ibm.com/developerworks/library/ws-coor/
[4] Don Box (DevelopMentor), et. al. SOAP: Simple Object Access Protocol 1.1 W3C Note. May 8, 2000.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
[5] K. Gottschalk, S. Graham, H. Kreger, and J. Snell Introduction to Web services architecture. IBM Systems Journal, Volume 41, Number 2, 2002

http://www.research.ibm.com/journal/sj/412/gottschalk.html
[6] Mark Curphey (OWASP), et. al. A Guide to Building Secure Web Applications and Web Services. Version 1.1. Sep. 22, 2002.
http://www.owasp.org/guide/
[7] Ed Simon, Paul Madsen and Carlisle Adams. An Introduction to XML Digital Signatures. August 8, 2001.
http://www.xml.com/pub/a/2001/08/08/xmldsig.html
[8] Aleksey Sanin. XML Security Library. A library supporting major XML security standards. Version 0.0.11. Nov 5, 2002.

http://www.aleksey.com/xmlsec/
[9] Ian Foster, et. al. The Physiology of the Grid. An Open Grid Services Architecture for Distributed Systems Integration. A Working OGSA Draft 2.9. June 22, 2002.
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf
[10] Jeff Kurtz. Services for Computer Supported Cooperative Work: A Green Paper. Jan 14, 2000.

http://jcs.mitre.org/jcs/info/green/greenPaperv2.html
[11] Ethan Cerami (O’Reilly). Top Ten FAQs for Web Services. Feb. 12, 2002.
http://www.oreillynet.com/lpt/a//webservices/2002/02/12/webservicefaqs.html
 [12] Joseph Hui. The Web Services Threat Model. Apr 5, 2002.

http://lists.w3.org/Archives/Public/www-ws-arch/2002Apr/0070.html
[13] Sue Hildreth, executive editor of ebizQ.net Web Services: The Next Generation of Distributed Computing April 2001

http://e-serv.ebizq.net/obj/hildreth_1.html
 [14] Sun Microsystems technical white paper. Web Services Made Easier: The Java APIs and Architectures for XML. Revision 3. June 2002.

http://java.sun.com/xml/webservices.pdf
[15] Mahmoud, Qusay H. and Ramesh Mandava. Deploying Web Services on Java 2, Enterprise Edition (J2EE). June 2002.
http://developer.java.sun.com/developer/technicalArticles/WebServices/wsj2ee/
[16] Rick Hower. Web Site Test Tools and Site Management Tools October 21, 2002

http://www.softwareqatest.com/qatweb1.html
[17] Erik Christensen (Microsoft), et. al. Web Services Description Language (WSDL) 1.1. W3C Note, March 15, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
� This is a draft of a M.S. thesis proposal prepared by Rajiv Dahiya, under the supervision of Dr. T. Andrew Yang, School of Science and Engineering, University of Houston – Clear Lake, Jan. 2003. The academic use of this draft proposal is a courtesy of Rajiv Dahiya.

Page 2 of 19

_1103084286.bin

