Developing Integrated Web and Database Applications

Using JAVA Applets and JDBC Drivers

Andrew Yang, James Linn, David Quadrato
Introduction

With the maturity of network technology, the deterministic factor of a 'successful' web site does not as much depend on its connectivity to the Internet, rather the content of web pages plays a more important role. The inclusion of dynamic data, for example, has become an increasingly desirable feature of a web page. Web servers that support dynamic web pages are capable of retrieving data at the time of user requests. Rather than being statically included in the web page, these dynamically retrieved data may physically reside in various file systems or database servers across the Internet.

JAVA, a new object-oriented programming language, has become a buzzword since its introduction by Sun Microsystems in 1994 [1, 2, 3]. It was claimed that JAVA, via its ability to embed applets in a web page, would make the content of a web page alive and dynamic. Data and information on a web page can now be updated dynamically when users request them.

In this paper, we discuss our experience of developing JAVA applets that use various types of JDBC (JAVA Database Connectivity) drivers to connect to and then manipulate data stored in SQL (Structured Query Language) database servers. We first start with the discussion of general client/server model involving JDBC, and then introducing the procedure of setting up programming projects employing this approach in an undergraduate database course.

Developing Dynamic Web Sites Using JAVA

JAVA is an object-oriented programming

language, and is also one of the few languages that support multi-threading [4] at the programming language level. JAVA is unique in its ability to generate bytecodes, which is transferred from a web server to a web browser, as an JAVA applet. The designer of an HTML page embeds links to JAVA applets in the web page. When the web page is retrieved and loaded by a JAVA-enabled web browser, the web server sends the corresponding bytecode to the browser, which loads the bytecode into the local computer and executes it.

The successful addition of dynamic data to a web site also depends on the integration of web servers with database servers [5]. A database server is capable of managing large volume of data by providing efficient storage allocation and indexing, integrity constraints enforcement, and user query processing. The integration of a web server to relational databases allows the web server to gain access to this large volume of data when needed. As shown in Figure 1, this integration requires a programming interface between the two servers. If JAVA is the chosen development tool, JDBC (JAVA Database Connectivity) would serve as this interface between a JAVA applet and a database server. While JDBC had not become a standard part of the JAVA Development Kit (JDK) until JDK version 1.1, which was released in early February of 1997, many JDBC drivers are already available for the major database servers. Interested readers may link to the web site http://www.javasoft.com/ to view a list of vendors who have developed or are developing JDBC-based products.

The primary objective of this paper is to present our effort of incorporating web development into an existing database course (CSC335 Database Management Systems Design), by first investigating the alternative JDBC drivers, and then creating programming projects for students to learn these alternative methods.

 inter-server

 web link (URL) programming

SQL

 interface database

 web browser
 web server server

 response answer

Figure 1: Integration of Web Server and Database Server

Our Experiments with JDBC Drivers
The basis of client-server programming starts with a client application capturing user-input and inserting it in an SQL statement. In a 2-tier client-server application, this statement is submitted to a database management system (DBMS), which carries out the SQL command and communicates the results back to the client application. In a multi-tier application, the client submits its input to an intermediary program, which then accesses the DBMS.

In traditional client-server programming all parts of the application are on the same LAN (Local Area Network). To extend the client-server metaphor to the web, which runs on top of a Wide Area Network (WAN), JDBC was created. JDBC is a database access framework API (Application Programming Interface) based on SQL (see http://JAVA.sun.com/intro.doc.html). To act as an intermediary between JDBC and the DBMS, four different types of JDBC drivers have been created. Using these drivers, a web server can allow a client using a standard browser to connect to a DBMS on a web server. Figure 2 illustrates the configuration for each of the four types of JDBC drivers to be used to connect to a SQL server. Detailed discussion of the four types of drivers and their trade-off are available from [6, 7]. Table 1 summarizes our findings in [7].

We have established a functioning JAVA applet that illustrates the use of different types of JDBC drivers. The sample JAVA applet is included below as Figure 3, with line numbers added at the beginning of each line for easy reference. We chose the Pubs database, which comes with SQL Server 6.5, as our target database. This program allows the user to choose which driver to use, then establishes a connection with SQL Server, inserts a name into the Authors table of the Pubs database, and executes a query that selects all rows in the Authors table and returns them to the client’s browser. Figure 4 shows the output sent back from the SQL Server when the ‘type 4’ button in the browser is clicked by the user.

	JDBC Drivers
	Pros
	Cons

	type 1:

JDBC-ODBC bridge drivers
	integrated into JDK v1.1
	1. Requires ODBC manager on the client;

2. The ODBC driver on each of the clients needs to be configured.

	Type 2:

Native API Partially-JAVA drivers
	allows the programmer to fully utilize the speed and power that comes from the use of the API specifically developed for the DBMS
	1. Driver is DBMS-dependent;

2. Requires a vendor-supplied DLL (Dynamic Link Library) to be installed in the client's JAVA library path.

	Type 3:

Net-Protocol All-JAVA drivers
	DBMS-independent;

allows the most flexible multi-server configuration
	1. Requires a vendor-supplied intermediate server;

2. Configuration of the intermediate server

	Type 4:

Native Protocol All-JAVA drivers
	Allows a direct call from the client to the database, without the need of client pre-configuration
	1. Requires the use of protocols proprietary to the DBMS,;

2. Need to load a different driver for each DBMS that it needs to access.

Table 1: Comparison of the 4 Types of JDBC Drivers

 EMBED Visio.Drawing.4

 EMBED Visio.Drawing.4

 EMBED Visio.Drawing.4

Figure 2: Configuration of Four Types of JDBC Drivers

To make JDBC calls, the package java.sql.* needs to be imported into the program, as shown by the statement at line 7. Then the JDBC driver to be used needs to be registered. This is accomplished by sending a message forName() to the class called Class, as shown at line 84 (for type 1 driver), line 98 (type 2), and line 116 (type 4), respectively. Once the JDBC driver is registered, a connection to the SQL server can be built by sending the message getConnection() to the object called DriverManager. A JAVA applet or application builds such a connection by supplying the URL, a username, and a password for the target SQL server. Refer to lines 85, 99, and 117 in Figure 3 for such statements.

The runQuery() method starting at line 25 demonstrates the actual manipulation of the SQL database, once a connection has been built. Statements from line 31 through line 34 show the insertion of a new record into the Authors table. An SQL insert statement along with the proper values is used as the parameters to the executeUpdate() method that is sent to the object upstmt. The executeQuery() is used to pass an SQL select statement to the SQL server, as shown by the statements from line 37 through 38. The result sent back from the SQL server are then processed by the applet using appropriate looping commands to process the data one row at a time.

1. // JAVA applet for JDBC drivers experiments

2. import java.applet.Applet;

3. import java.net.*;

4. import java.io.*;

5. import java.util.*;

6. import java.awt.*;

7. import java.sql.*;

8. //import weblogic.db.xjdbc.*;

9. //import weblogic.common.*;

10. public class jdbcapp extends Applet

11. { public TextArea display;

12. private Button b1, b2, b3, b4;

13. public Connection con;

14. public void init()

15. {

16. display = new TextArea(30, 80);

17. b1 = new Button("Type 1");

18. b2 = new Button("Type 2");

19. b3 = new Button("Type 3");

20. b4 = new Button("Type 4");

21. add(b1); add(b2); add (b3); add (b4);

22. add(display);

23. }

24. public void runQuery(Connection con)

25. { Statement stmt, upstmt;

26. ResultSet results;

27. StringBuffer buf = new StringBuffer();

28. try {

29. // ADD TO QUERY

30. upstmt = con.createStatement();

31. upstmt.executeUpdate

32. ("insert into authors (au_id, au_lname, au_fname, phone, contract)" +

33. " values ('224-99-8888', 'Jane', 'John', '203-333-4444', 0)");

34. // CREATE STATEMENT and QUEARY ALL

35. stmt = con.createStatement();

36. results = stmt.executeQuery("select * from authors");

37. // GET ALL RESULTS

38. ResultSetMetaData rsmd = results.getMetaData();

39. int numCols = rsmd.getColumnCount();

40. int i, rowcount = 0;

41. // get column header info

42. for (i=1; i <= numCols; i++)

43. {

44. if (i > 1) buf.append(",");

45. buf.append(rsmd.getColumnLabel(i));

46. }

47. buf.append("\n");

48. // break it off at 100 rows max

49. while (results.next() && rowcount < 100)

50. {

51. // Loop through each column, getting the column

52. // data and displaying

53. for (i=1; i <= numCols; i++)

54. {

55. if (i > 1) buf.append(",");

56. buf.append(results.getString(i));

57. }

58. buf.append("\n");

59. rowcount++;

60. }

61. results.close();

62. display.appendText(buf.toString());

63. // CLOSE CONNECTION

64. con.close();

65. display.appendText("\nConnection Closed");

66. }

67. catch (Exception e)

68. {

69. System.out.println(e);

70. return;

71. }

72. }

73. public boolean action(Event e, Object o)

74. {

75. if (e.target == b1)

76. { display.setText("JDBC driver type I\n");

77. // REGISTER DRIVER

78. try

79. {

80. Driver d = (Driver)Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();

81. con = DriverManager.getConnection("jdbc:odbc:pubs", "test", "test");

82. }

83. catch (Exception a)

84. {

85. System.out.println(a);

86. }

87. runQuery(con);

88. }

89. if (e.target == b2)

90. { display.setText("JDBC driver type II\n");

91. // REGISTER DRIVER

92. try

93. {

94. Class.forName("weblogic.jdbc.dblib.Driver");

95. con = DriverManager.getConnection

96. ("jdbc:weblogic:mssqlserver", "test", "test");

97. }

98. catch (Exception a)

99. {

100. System.out.println(a);

101. }

102. runQuery(con);

103. }

104. if (e.target == b3)

105. {

106. display.setText("JDBC driver type III\n");

107. }

108. if (e.target == b4)

109. { display.setText("JDBC driver type IV\n");

110. try

111. {

112. Class.forName("connect.microsoft.MicrosoftDriver").newInstance();

113. con = DriverManager.getConnection

114. ("jdbc:ff-microsoft://:1433", "test", "test");

115. }

116. catch (Exception a)

117. {

118. System.out.println(a);

119. }

120. runQuery(con);

121. }

122. return true;

123. }

124. }

Figure 3: Sample JAVA applet demonstrating the four types of JDBC Drivers

Configuration of Database Development Projects
In the CSC335 class, we used a small network of computers running Windows NT Servers v4.0 and SQL database servers v6.5. The JAVA development tool used was JDK v1.1.2. Students in the class were required to modify the sample JAVA applet as shown in figure 3, in order to create a database application that is accessible by users using a JAVA-enabled and JDBC-aware web browser, such as HotJava v1.0 or above, or Netscape Navigator v4.0 or above.

An instructor who plans to introduce JAVA and JDBC into a database development class may follow the procedure as laid out below.

· Set up the user directory on the server by creating user accounts and directories for each of the students in the class, and setting access permission to the directories;

· Configure the web server by creating virtual directories for each of the users;

· Have the sample JAVA applet and a sample HTML source file available for students to copy to their own directories;

· Give the students the following instructions with respect to the revision, compilation and testing of the applet.

1. On the client machine, configure the ODBC manager by adding an ODBC entry (e.g., pubs) that needs to be configured to connect to the SQL server running on the web server machine. IP address of the web server may be required for the configuration to be successful.
2. Revise the sample JAVA applet by incorporating appropriate SQL statements such as create table, insert into, and select into the program, and replace the database username and password with each user's own username and password. For instance, in the case of type 1 JDBC driver (line 85 in Figure 3), both the username and the password are 'test'. The ODBC entry 'pubs' on line 85 may also need to be changed if a different ODBC entry is to be used on the client machine.
3. Use the javac command to compile the source program into bytecodes (i.e., a *.class file). Save the bytecode in each user's directory on the server.
4. On the client machine, invoke a JDBC-aware web browser, enter the web server's location followed by the alias representing each user's virtual directory.
5. Click the appropriate button to activate the JAVA applet from the server. View the result to verify the correctness of the output.
Programming tips: a. Steps 2 through 5 may need to be iteratively repeated until the verification process is complete; b. During the iterative testing process, redundant records may be inserted into the same table. This will cause the applet to return an error due to the violation of entity integrity. Advice students to either delete all records from a table before re-insertion, or drop the table and then re-create it, followed by re-insertion.

[image: image1.png]otJavaitm)
Fle Edt View Places Help

Plage: | fleifiocaihostc:hy Documentsicsc458ijdbcapp il
Applet started

[&

Twed | Type2| Typed| [fipei]
JDBC diver bpe IV

au_id,au_Iname,au_fname,phone,address cit stats 2ip contract
172-32-1176,White,Johnson, 408 496-7223,10932 Bigge Rd Menlo Park CA84025,1
213-46-8915 Green Marjorie, 415 986-7020,309 63rd 5t #411 Oakland,CA94618,1
224-99-8888,Jane,John, 203 333-4444,nullnullnull,null 0
238-95-7766,Carson,Cheryl 415 548-7723,589 Danwin Ln Berkeley,CA,94705,1
267-41-2394 0'Leary Michael 408 286-2428,22 Cleveland Av. #14,8an Jose,CA95128,1
274-80-2391 Straight Dean, 415 834-2019,5420 College Av,Oakland,CA,84600,1
341-22-1782,3mith Meander 813 843-0482,10 Mississippi Dr.Lawrence KS,66044,0
409-56-7008,Bennet Abrahar, 415 658-8932,6223 Baternan St Berkeley,CA,94705,1
427-17-2319,Dull Ann, 415 836-7128,3410 Blonde St Palo Allo,CA,84301 1

472-27-2349 Gringlesby,Burt 707 938-6445,P0 Box 792, Covelo,CA,95428,1

486-20-1786 Locksley,Charlene, 15 585-4620,18 Broadway Av.San Francisco,CA84130,1
527-72-3248 Greene Morningstar 15 207-2723,22 Graybar House Rd. Nashvile,TN,37215,0
648-92-1872 Blotchet Halls,Reginald 503 745-6402,55 Hillsdale Bl Corvallis,OR 97330,1
672.71-3240 Yokomoto,Akiko, 415 935-4228,3 Silver CLWalnut Creek,CA,84505,1
712-45-1867 del Castilo,nnes,15 996-8275,2288 Cram L #36,Ann Arhor M| 48108, 1
722.51-5454 DeFrance, Michel, 219 547-9982,3 Balding PL.Gary,N,46403,1

724-08-0931 Siringer,Dirk, 415 843-201,5420 Telegraph Av,0akiand,CA,4609,0
724-80-8391 MacFeather Steams, §15 354-7128,44 Upland His. 0akland,CA94612,1
756-30-7301 Karsen,Livia, 415 §34-0219,6720 MecAuley St,0akland,CA,84600,1
807-01-8654 Panteley,Syia,301 946-8353,1956 Arlington P1,Rockvile,MD, 20853,1
846-92-7186 Hunter, Sheryl 415 836-7128,3410 Blonde 5t Palo Alto,CA,34301 1
893.72-1158 McBadden Heather, 707 448-4982,301 Putnam,vacaville,CA,05688,0
899-46-2035 Ringer,Anne,801 826-0752,67 Seventn Av,Salt Lake CityUT 84152,1
998-72-3567 Ringer,Alhert 801 826-0752,67 Seventh Av,3alt Lake City,UT,84152,1

Cannection Closed

Figure 4. Sample Output from the JAVA Applet Using JDBC Drivers
Summary

In this paper we have discussed different types of JDBC drivers under the context of a two-tier client/server model. However, it is entirely possible to use them to develop a multi-tier client/server application.

The integration of web servers with database servers via the use of JAVA applets and JDBC drivers is useful for the teaching of database programming and web-based application development. The applet that we have developed, along with our experience of configuring the JDBC and JAVA environment, was used in a database course. Students built more complicated database/web applications on top of this sample applet.

Future extension of our work may involve the following items:

· the security implication of using JDBC drivers in a multiple, heterogeneous DBMS environment

· the possible interaction of JDBC with firewalls and proxy servers

· the evaluation of JDBC drivers under the context of real-world applications, especially their reliability and performance

References
1. Deitel, H. and Deitel, P., JAVA: How to Program, Prentice Hall, Inc., 1997.

2. Cornell, G., Horstmann, C.S., Core JAVA, SunSoft Press of the Prentice Hall, 1996.

3. Budnick, L., The Windows NT Web Server Book, Ventana Communications Group, Inc., 1996.

4. Lewis, B., Berg, D.J., Threads Primer: A guide to multithreaded programming, SunSoft Press of the Prentice Hall, 1996.

5. Tackett, R., ‘Webified Database Servers’, Network World, Vol. 13, No. 50, 12/9/1996.

6. INTERSOLV White Paper, Deploying JAVA and JDBC - Four Types of JAVA JDBC solutions. (Refer to www.intersolv.com for details.)

7. Yang, A., etc., ‘The Inclusion of WWW Development into an Information Systems Curriculum’, Proceedings of the 1997 International Conference on Systemics, Cybernetics, and Informatics, Caracas, Venezuela, July 1997.

8

_1030045008.vsd

_1030045009.vsd

_1023786264.bin

_1030045007.vsd

_924805082.vsd

