
Emulation of Wireless Sensor Networks for Object Tracking

T. Andrew Yang+

(yang@UHCL.edu)

Deepesh Jain+

(deeptansh@gmail.com)

Sadegh Davari+

(Davari@UHCL.edu)

Bo Sun++

(bsun@my.lamar.edu)
+ Division of Computing & Mathematics, University of Houston – Clear Lake, Houston, Texas
++ Department of Computer Science, Lamar University, Beaumont, Texas

Abstract
Wireless sensor networks (WSN) represent a new technology that could be adopted to achieve ubiquitous
computing and embedded Internet. One example of WSN applications is surveillance and monitoring of a
deployment area. The goal of our project is the development of effective WSN for detecting and tracking
human and/or vehicle presence. In this paper, our focus is two-folded. We first examine the issues of
tracking objects using wireless sensor networks, including a brief introduction to object tracking, a survey
of work related to object tracking using WSN, and the challenges of designing an object tracking sensor
network using the emulation approach (in contrast to the simulation approach). The second focus of this
paper is the design of a sample wireless sensor network application capable of detecting human presence.
In the sample application, motes and sensor nodes capture data from the surrounding environment and
send the data to the base station. A Java application running at the base station analyzes the data to
determine whether a human is present. In addition to discussing our experience of developing the project,
we examine the challenges of emulating a wireless sensor network, difficulties encountered during the
project, and the algorithm implemented in the application. We also propose the design of a multi-node
WSN for detecting/tracking humans. Projects are currently underway to implement and evaluate the
design.

1. Introduction
A wireless sensor network (WSN) is a network made of a set of independent sensor nodes. The sensor
node is a self-contained unit consisting of a battery, a radio module, sensors, and a low speed on-board
processor. A WSN system is deployed over an area in an attempt to sense and monitor events of interest
or to track people or objects as they move through the area [1] [2].

Wireless sensor networks have significant impact upon the efficiency of military and civilian applications,
which may be classified into three classes [2]: (a) Data collection, (b) Surveillance, and (c) Object
tracking. Object tracking is one of the most prominent applications of wireless sensor networks. As an
example, a large quantity of sensor nodes could be deployed over a battlefield to detect enemy intrusion
instead of using landmines. Thus it can save lives of civilians from being lost due to disasters caused by
landmines. This project is to demonstrate how a wireless sensor network may be employed to detect and
track objects.

Wireless sensor networks represent a relatively new research filed with many research projects going on.
However, most of the WSN projects are implemented using simulation, rather than emulation. One reason
behind this phenomenon is the increased difficulty when actual devices are used in implementing a WSN
research project. Emulating a WSN, actual hardware devices are needed; therefore the project cost and
complexity are increased. In contrast, in the widely adopted simulation approach, the researcher is only

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 1/11

required to acquire and use the simulation software. Emulation becomes even more complicated when the
deployed WSN consists of a large number of sensor nodes. Another limitation of the emulation approach
is the constraint of limited battery power; exhausted batteries of sensor nodes must be replaced and, to
ensure accurate sensor readings, proper level of power must be maintained throughout the running of a
WSN project.

Designing a wireless sensor network requires a proper understanding of the interplay between network
protocols, energy aware design, and signal processing algorithms and distributed programming [3].
Nevertheless, different types of WSN applications pose different level of challenges. Developing a sensor
network for sensing temperature or light, for example, is not as challenging as developing a sensor
network for detecting and tracking motion of objects. Detecting temperature or light does not require
much computing or logic. Data is directly available in the packets sent by the sensor nodes; the only task
that remains is to present the data in readable form to the user. However, detecting and tracking motion of
objects typically involves complicated algorithms. Since sensor nodes are not equipped with powerful
processors, complicated computations are usually done somewhere else, whether in the base station or in
one of the aggregation nodes, which aggregate the raw data fetched from the sensor nodes and produce a
local result. Furthermore, temperature and light in general can be detected by the sensors smoothly
because their distribution in the environment is typically ubiquitous or even homogenous. In contrast, in
an object tracking sensor network, the object to be detected/tracked occupies a limited area in the
environment, depending upon its shape and size. To make it worse, the speed of a moving object may be
so fast that the sensors may not be able to accurately detect its location. Therefore, because all of the
reasons mentioned above, emulation is typically not the chosen approach when developing an object
detecting and tracking WSN application; it incurs many challenges, involving various tasks including
detecting the relevant quantities, monitoring and collecting the data, assessing and evaluating the
information, and presenting meaningful information [4].

When deploying a wireless sensor network, the following list represents the typical hardware components
needed:

a) Motes: A mote is a low powered computer with a radio transmitter, capable of forming ad hoc
communication with other motes [5]. A mote may be connected to one or more sensor boards and
therefore may perform multiple sensing functions.

b) Sensor boards: A sensor board is a chip on which one or more sensors are present.

c) Gateway: A gateway is a device responsible for injecting queries into the sensor network,
gathering responses from the network, and presenting the responses to the user’s workstation. The
gateway communicates with the WSN through short-range wireless links, and interacts with the
user directly or remotely through a wired or mobile communication network [6].

d) Monitoring workstation: The monitoring workstation is usually a PC with required compatible
software installed, and is used by the user to configure the WSN, to submit queries to the
network, or to view the data collected by the network.

Crossbow, EasySen, and MoteIV are some of the manufacturing companies that provide hardware and
software solutions for constructing wireless sensor networks. For object tracking application using WSN,
Crossbow provides the MSP4101 system, which is a packaged system that consists of motes and sensors
capable of detecting moving objects. Our findings indicate that the TelosB mote from Crossbow and the
Tmote mote from MoteIV can be used together with the WiEye or the SBT80 sensors from EasySen to
construct a wireless sensor node capable of detecting objects. With the help of the available hardware, this
project is to build a wireless sensor network to track objects. Based on information collected from the
vendors’ websites [7] [8] [9], this goal could be accomplished in three steps:

1 Note: MSP410 has been discontinued by Crossbow, Inc. since early 2007.

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 2/11

(1) Testing of available sensors with simple applications, and selection of sensors and motes for
further deployment.

(2) Deployment of a WSN and testing of simple wireless sensor networks applications with the
selected sensors and motes.

(3) Testing of object tracking applications in the deployed wireless sensor network.

The rest of this paper is organized as follows. Section 2 review existing work related to tracking objects
using WSN. Section 3 examines the unique challenges of developing a wireless sensor network for object
tracking using the emulation approach. In section 4, we present our design of a WSN using emulation, by
discussing the hardware, the software, the Java application that we developed for detecting human
presence, the experiments we conducted, and the results of the experiments. Section 5 concludes the
paper, with discussions of future work.

2. Work Related to Object Tracking in WSN
In this section, we discuss the results of our surveying work related to tracking objects in WSN.

At the University of Notre Dame, the team Moses has presented a novel, unified approach named non-
recursive evidence filtering [11]. Their approach is based on the Dempster-Shafer formalism [10] for
evidence representation. The system they built is capable of selectively fusing partial evidence in a
network to directly infer events of interest such as threats occurring with a certain temporal distribution,
while accommodating the varying reliability and accuracy of information sources [11].

Tsai, etc. at the National Cheng Kung University propose a protocol to track a mobile object in a sensor
network dynamically [12]. They claim that previous researches mostly focus on how to track objects
accurately and do not consider the query for mobile sources. Additionally, the sensors need not report the
tracking information to the user. Therefore, they propose to concentrate on mobile user’s capability to
query target tracks and obtain the target position effectively. The mobile user can obtain the object
position without broadcast queries. The user is moving and approaching the target when he knows the
target’s position. Their paper proposes a binary sensor model, in which each sensor's value is converted to
a single bit, which represents whether the object is moving toward or away from the sensor [12].

Kung and Vlah [14] consider a sensor network as a distributed database, and propose a scalable message-
pruning hierarchy tree called DAB (Drain-And-Balance) for object tracking. The tree is a logical tree to
connect all sensors. Each internal node in the tree maintains a set containing its descendants’ coverage.
Lin and Tseng [13] extend the approach proposed in [14]. Instead of assuming the existence of a logical
tree, they try to realize the logical tree by the sensors directly. In this manner the real communication cost
can be evaluated more accurately. Their paper proposes two message-pruning tree structures called DAT
(Deviation-Avoidance Tree) and Z-DAT (Zone-based DAT). The authors formulate communication costs
associated with trees. Through simulations, they demonstrate the advantage of their approach [13].

Aslam, Butler, etc. [15] examine the role of very simple and noisy sensors for the tracking problem. Their
paper proposes a binary sensor model, in which each sensor’s value is converted reliably to one bit of
information only, independent of the object's moving direction. Their paper shows that a network of
binary sensors has geometric properties that can be used to develop a solution for tracking with binary
sensors, and presents the resulting algorithms and simulation experiments. They develop a particle
filtering style algorithm for target tracking using minimal number of sensors. They presents an analysis of
a fundamental tracking limitation under this sensor model, and show how this limitation can be overcome
through the use of a single bit of proximity information at each sensor node. They claim that their
extensive simulations show low error, which decreases with sensor density [15].

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 3/11

He, etc. [16] presents the design and analysis of VigilNet, a large-scale outdoor WSN which tracks,
detects and classifies targets in a timely and efficient manner. Through simulation and experiments, He,
etc. demonstrate that their system can meet the real-time requirement and its tradeoffs are validated. On
the basis of deadline partition method and theoretical derivations to guarantee each sub-deadline, they
make guided engineering decisions to meet the end-to-end tracking deadline.

Tran and Yang [17] consider optimized computation and energy dissipation as critical requirements to
maximize the lifetime of the wireless sensor network. They consider that the existing methods attempting
to achieve these requirements, like LEACH based algorithms, suffer either redundancy in data or sensor
node deployment, or complex computation incurred in the sensor nodes. They therefore propose a new
method called Optimized Communication and Organization (OCO), which is an algorithm that ensures
maximum accuracy of target tracking, efficient energy dissipation, and low computation overhead on the
sensor nodes. Simulation evaluations of OCO are compared with other two methods under various
scenarios [17].

3. The Challenges of Developing WSN for Object Tracking using Emulation
As evident in the earlier discussions, most WSN research and educational projects rely on simulation. In
particular, very few WSN research projects adopt emulation when the project involves the detection and
tracking of moving objects, such as vehicles or humans. As reported by Singh [4], object tracking using
WSN involves a set of tasks, including collecting data from the WSN to the main station, designing and
implementing algorithms for the tracking application, ensuring real-time communication, and interpreting
the data for object tracking; these tasks make developing a WSN for object tracking using emulation more
challenging than the typically adopted simulation approach.

In this section, we examine WSN research projects that adopt the emulation approach to deploy a network
for detecting an object in motion. We first give overview of each project, and then analyze their strengths
and weakness.

Salatas [1] constructs an object-
tracking system that demonstrates a
real-world application using a
WSN to track objects and
communicate the tracking
information to the base station. The
system consists of an event-driven
application implemented in Java,
built on top of the Crossbow MSP
410 wireless sensor system. The
algorithm implemented in the
application processes the data
returned from the WSN detection
signals and tracks the object’s
motion. Figure 1 shows the design
of Salatas’ system. The wireless
sensor network is connected with a
system called the Tactical Remote
Sensor System, which includes
several miniPCs, a Globalstar
Phone, and a WebCam. In addition, the system includes an FTP server. The system detects objects by

Figure 1. Salatas’ WSN Object Tracking System [1]

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 4/11

performing picture comparisons. It then transmits those pictures to the control station by using satellite or
cellular communications [1].

This object-tracking application receives and uses the raw values returned by the sensor network to
produce meaningful outputs. The application basically detects human or vehicle type of objects on the
basis of infrared or magnetism data sensed by the sensors. If, in consecutive values of raw data, the
magnetism and infrared values are changed and are greater then the normal environmental magnetism and
infrared values of the deployed area, the application infers the detected object as a vehicle. If, on the other
hand, the changed value is only the infrared values and not the magnetism, the application considers that
the detected object as a human [1]. Salatas’ project is one of the few WSN object tracking projects using
emulation. The application has certain limitations: (a) it is only tested for a small number (8) of nodes;
(b) scalability of this project was not explored; (c) it has limited deployment scenarios, in which nodes are
deployed on a straight road, on a T-Shaped road, or a cross road intersection. Detection of free motion of
objects is therefore not considered in this application.

In Singh’s project “Real-time Object Tracking with Wireless
Sensor Networks” [4], he developed a dynamic system with
WSN, which uses the Time Division Multiple Access
(TDMA) protocol with the Extended Adaptive Slot
Assignment Protocol (EASAP). EASAP was shown to be a
suitable protocol to be used in a dynamic WSN. Localization
of source is presented by using an algorithm that is
demonstrated using different configurations named X-
Configuration, T-Configuration and Y-Configuration. In
these configurations nodes are placed according to the
alphabets. The data source in the demonstration is light
generated by a lamp. Source localization algorithm uses
averaging of signal strength detected by sensors and is proven
to be well suited for this application [4].

A source localization example is illustrated in Figure 3. As
shown, three sensor nodes are placed with an equal distance relative to each other. When a signal is
received of strength αj by each jth sensor, the coordinates of the source is calculated by the averaging
algorithm as follows:

Figure 3. Source localization example
with three nodes [4]

x = (500.αa+100.αb+900.αc)/ (αa+αb+αc), and

y = (900.αa+100.αb+100.αc)/ (αa+αb+αc) [4].

Singh’s project was tested with a maximum number of six nodes, and the results show some failure in
measured positions of objects compared to the actual physical positions of the objects.

As shown by the above discussed examples, emulation of WSN is a challenging task, especially when it
comes to object tracking. Each of the examined projects exhibits certain limitations. Although still in its
infantry stage, our project aims to develop a wireless sensor network system that incorporates scalability
into its design, and is not restricted to fixed deployment scenarios but capable of tracking the free motion
of objects under consideration.

4. Description of a Sample Human Detection Project
This project is built to detect the presence of a human when he/she comes in the vicinity of the sensors
used in the system. To recognize a human, we had developed a Java application, which runs on the base

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 5/11

station. The application collects data from the network and analyzes the collected data to detect the
presence of human. PIR (Passive InfraRed) sensors are used to collect data. Initial data is collected from
the environment when no human is present, and a threshold value is set. Later when a human comes into
the vicinity of the sensor, it compares the current collected value with the threshold value and makes
decision of human presence. The rest of this section describes the design of the project, and the hardware
and software used. Evaluation of the project is briefly described.

4.1. Design of the system

Figure 4 depicts the design of our
system. A sensor node is comprised of a
battery-powered mote and a sensor
board, which is mounted on top of the
mote. A gateway connected to the base
station is in charge of passing the
collected data from the network to the
base station. The Java application
running on the base station analyzes the
data collected from the network to detect
the presence of a human.

The specific hardware components
employed in the system are summarized
as follow:

• The mote used is the TelosB mote
(TPR2400 [7]) manufactured by the
Crossbow, Inc.

• The sensor board is the WiEye
sensor board manufactured by the
EasySen, Inc. It has long-range passive infrared (PIR) sensor with 90-100° wide detection cone, 20-
30 feet detection range for human presence [8]. As shown in Figure 4, the sensor board is mounted on
a TelosB mote to form a node.

Figure 4. Design of a WSN Detecting Human Presence

• No special gateway is used. As shown in Figure 4, a TelosB mote is connected to the USB port of the
base station to pass data between the base station and the network.

• The base station is a desktop computer, on which Cygwin and Java virtual machine are installed.

The software employed in the system includes the following:

• Cygwin is used to configure the WSN. Applications in motes are installed through its command based
interface. The base station application is also invoked from this software.

• Programmer’s Notepad is used to write, compile and debug the NesC program, which is installed in
the motes to collect data from the environment.

• Java SDK 1.6.0 is used to develop the Java application, which processes data collected from the
network and outputs the results to the screen of the base station.

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 6/11

4.2. A Java application capable of detecting human
presence

Figure 5. Flowchart of Human
Presence Detection Program

The TinyOS and Java code for reading sensor channel of the
EasySen sensor board (SBT80) over the TmoteSky / TelosB
motes are available at the EasySen website2. We modified those
codes to suit the need of our project.

As shown in Figure 5, the application initially fetches data from
the environment in absence of any object. Once the application
starts fetching data with less variation or constant data, a
threshold value is set. In this experiment the PIR threshold value
was set to be 10. Afterwards, the application continuously
receives data from the network. If the detected value becomes
greater than the threshold value, it indicates an object is detected.
When that happens, the tracking algorithm may be applied (if
tracking is enabled), or otherwise the application continue to
collect data. The tracking algorithm is yet to be developed. The
current application only deals with object detection.

The procedure of configuring the system and running the
application is discussed in details in Appendix A.

4.3. Experiments Conducted

 Several experiments were conducted in the lab to test the
working of the application. Currently the project is tested with a
single node. The application is able to detect the presence of a
human in front of a node. The application is also able to detect
the presence of a
human in both
lighted and dark
environments. It
is independent of
the level of light
present in the
environment.

Anticipated
evaluation results:
If a human is not
present in the
vicinity of the
sensor, a message
“No object
detected” is
shown on the
screen. On the

Figure 6. Screen snapshot of Cygwin, showing the output of the Java
application detecting human presence

2 EasySen SBT80 Multi-Modality Wireless Sensor Board, http://www.easysen.com/support/SBT80v2 (9-15-2007)

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 7/11

http://easysen.com/products.htm

other hand, if an object is detected, a message “Object detected: I know you are there!” is shown on the
screen as shown in Figure 6.

5. A WSN for Detecting and Tracking
Further enhancements of the sample application are in progress, including testing its working with
multiple sensor nodes and the addition of the tracking capability. Figure 7 illustrates our design of a WSN
with multiple nodes for object tracking.

As shown, twelve sensor
nodes will be mounted
on the ceiling of the lab.
The WiEye Long-range
passive infrared (PIR)
sensor with 90-100° wide
detection cone, 20-30
feet detection range for
human presence [18] are
to be used for tacking a
human motion in the
room. TelosB are to be
used as the motes; their
radio frequency outdoor
range is about 75 to 100
meters and indoor range
is about 20 to 30m [19].
However, for accuracy
and redundant coverage
of the monitored area,
the distances between the
nodes are kept at 20 feet
as shown in the figure.

Figure 7. Design of an Object Tracking WSN Testbed

(Twelve nodes are mounted on the ceiling of the lab as adjacent equilateral
triangles.)

This set of nodes will form a WSN communicating with the base station. An algorithm is to be developed
for the base station such that it will use queue data structure for storing data collected from each node.
Data for each node will be stored in a separate queue. When a sensor node detects data variation in the
environment (i.e., the collected value is greater than the threshold value), it sends that information to the
base station, and the information will be stored in the queue associated to that particular node. When all
the different nodes have sent their data, their corresponding queues on the base station will be filled with
data with the same (or nearly the same) timestamps. Afterwards, calculation will be done to detect the
position of the detected object.

The algorithm may use averaging functions similar to those employed in [4] to calculate the position of
the detected object, by using strength of the signals detected by the sensor nodes. The algorithm used in
[4], however, was tested on a plane (i.e., the object and the sensors are on the same plane). In contrast, in
the design illustrated in Figure 7, the object will be on the floor of the room while the sensors are on the
ceiling. Therefore, in the first test of the design, the object and the sensors will be placed on the same
plane (all on the floor or on the wall). Later in the second test, we will consider the case where the object
is somewhere perpendicular to the plane where the sensors are located, by placing the sensor nodes on the
ceiling while keeping the object on the floor.

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 8/11

To achieve better accuracy, the nodes in the proposed design (as illustrated in Figure 7) form symmetrical
figures. For example, if an object is below the triangle formed by nodes 1, 2, and 4, calculation can be
done by using the triangle. Similar calculations may be carried out by using the rectangle formed by
nodes 1, 6, 7, and 2, or by using the hexagon formed by nodes 1, 3, 6, 7, 5, and 2. Complex calculations
can be done with the help of rhombus, trapezium, etc.

The proposed design in Figure 7 draws strengths from the two WSN emulation projects discussed in
section 3. In addition, the topology of the WSN takes into account redundant coverage of the surveilled
area.

6. Conclusion and Future Work
In this paper, we have surveyed research projects related to detecting/tracking objects using wireless
sensor networks. Most of the existing projects adopt the simulation approach, by using a network
simulator to construct the sensor network. Fewer research projects adopt the emulation approach, which
demands actual devices to be used to construct the sensor network. To illustrate the construction of a
wireless sensor network application, we constructed a sample WSN application to detect the presence of a
human. The application demonstrates how various hardware and software components are integrated to
build a WSN application capable of detecting human presence. As exhibited by the experiments, the
application is capable of accurately fulfilling its mission, indicating that the passive infrared sensor
employed in the application is sufficient for the detection of human presence.

Parts of our future work include the implementation of the design illustrated in Figure 7, and the testing
and evaluation of the design. The evaluation of the performance of the constructed wireless sensor
network will examine features such as the delay of messaging, the accuracy of object detection, etc. The
development of the tracking algorithm(s) is another significant part of our future project. Another
extension of the WSN application is to detect and track both humans and vehicles, by using both
magnetism and passive infrared data.

References
[1] Salatas, V. (2005). “Object tracking using wireless sensor networks”. M.S. Thesis. Naval Postgraduate

School, California.

[2] Wikipedia. "Wireless Sensor Network". Retrieved September 20, 2007, from
http://en.wikipedia.org/wiki/Wsn.

[3] Estrin, D., A. Sayeed, and M. Srivastava (2002). “Mobicom 2002 Tutorial - Wireless Sensor
Networks". Retrieved October 10, 2007, from http://nesl.ee.ucla.edu/tutorials/mobicom02.

[4] Singh, I. (2007). “Real-time Object Tracking with Wireless Sensor Networks”. M.S. Thesis. Luleå
University of Technology.

[5] Tech-q.com. "Technical FAQ". Retrieved September 21, 2007, from http://www.tech-
q.com/motes.shtml.

[6] European Commission. "ANGEL: Advanced Networked embedded platform as a Gateway to Enhance
quality of Life". Embedded Systems Unit – G3, Directorate General Information Society, European
Commission. Retrieved September 20, 2007, from
ftp://ftp.cordis.europa.eu/pub/ist/docs/dir_c/ems/angel-v1.pdf

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 9/11

http://en.wikipedia.org/wiki/Wsn
http://nesl.ee.ucla.edu/tutorials/mobicom02
http://www.tech-q.com/motes.shtml
http://www.tech-q.com/motes.shtml
ftp://ftp.cordis.europa.eu/pub/ist/docs/dir_c/ems/angel-v1.pdf

[7] Crossbow. "Products overview of Crossbow Technology". Retrieved September 15, 2007, from
http://www.xbow.com/Products/wproductsoverview.aspx.

[8] EasySen. "Products overview of EasySen". Retrieved September 15, 2007, from
http://easysen.com/products.htm.

[9] MoteIV. "Products overview of MoteIV". Retrieved September 15, 2007, from
www.moteiv.com/products/tmotesky.php.

[10] Wikipedia. "Dempster-Shafer theory Wiki". Retrieved September 20, 2007, from
http://en.wikipedia.org/wiki/Dempster-Shafer_theory.

[11] Dewasurendra, D. A., P. H. Bauer, and K. Premaratne (2006). "Distributed evidence filtering in
networked embedded systems". Networked Embedded Sensing and Control, ser. Lecture Notes in
Control and Information Sciences 331: 183–198.

[12] Tsai, H., C. Chu, and T. Chen (2007). "Mobile object tracking in wireless sensor networks". Science
Direct – Computer Communications 30(8): 1811-1825.

[13] Lin, C. and Y. Tseng (2004). “Structures for in-network moving object tracking in wireless sensor
networks”. Proceedings of the First International Conference on Broadband Networks
(BROADNETS'04).

[14] Kung, H. T. and D. Vlah (2003). “Efficient Location Tracking Using Sensor Networks”. Proc. of
2003 IEEE Wireless Communications and Networking Conference (WCNC), March 2003.

[15] Aslam, J., Z. Butler, F. Constantin, V. Crespi, G. Cybenko and D. Rus (2003). “Management:
Tracking a moving object with a binary sensor network”. Proceedings of the 1st international
conference on Embedded networked sensor systems (SenSys '03).

[16] He, T., P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q. Cao, J. A. Stankovic, and T.
Abdelzaher (2006). “Achieving Real-Time Target Tracking Using Wireless Sensor Networks”.
Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2006.

[17] Tran, S. P. M. and T. A. Yang (2006). “Evaluations of target tracking in wireless sensor networks”.
Proceedings of the 37th SIGCSE technical symposium on Computer science education SIGCSE '06,
ACM SIGCSE Bulletin, 2006.

[18] EasySen. "EasySen Products - WiEye". Retrieved September 20, 2007, from
http://easysen.com/WiEye.htm

[19] Crossbow. "Crossbow, TelosB, mote platform". Retrieved December 15, 2007, from
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf.

[20] EasySen. "EasySen SBT80 Datasheet". Retrieved September 15, 2007, from
http://www.easysen.com/support/SBT80v2/DatasheetSBT80v2.pdf

 [21] EasySen. "EasySen WiEye Datasheet". Retrieved September 15, 2007, from
http://www.easysen.com/support/WiEye/DatasheetWiEye.pdf

[22] TinyOS. "TinyOS Tutorial, Lesson 6". Retrieved October 1, 2007, from
http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson6.html

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 10/11

http://www.xbow.com/Products/wproductsoverview.aspx
http://easysen.com/products.htm
http://www.moteiv.com/products/tmotesky.php
http://en.wikipedia.org/wiki/Dempster-Shafer_theory
http://easysen.com/WiEye.htm
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.easysen.com/support/SBT80v2/DatasheetSBT80v2.pdf
http://www.easysen.com/support/WiEye/DatasheetWiEye.pdf
http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson6.html

Emulation of Wireless Sensor Networks for Object Tracking (DRAFT) 11/11

Appendix A: Procedure of running the application
The following is the programming sequence as outlined in the data sheet of the SBT80 sensor [20]. The
sample application folder SBT80app consists of 2 header files (SBT80ADCmap.h and SBT80Msg.h), a
configuration file (MobileNode.nc), and a module file (MobileNodeM.nc). It samples all 8 sensor channels
in a sequence and transmits data to a PC. The file ListenSBT80v2.java reads and displays the packets
transmitted using the application discussed above.

Step 1: Program one TmoteSky / TelosB mote with the MobileNode application given here.

(a) Copy and unzip the folder SBT80app into the /opt/tinyos1.x/apps folder in your TinyOS
installation

(b) Connect TmoteSky mote to the PC’s USB connector and execute the command make tmote
install inside the folder SBT80app to install the application

(c) Connect the sensor board SBT80v2 to the expansion connector of the TmoteSky mote.

Step 2: Program a base station with the generic TOSBase application. Connect another TmoteSky mote to
the PC’s USB connector and execute the command make Tmote install inside the folder
/opt/tinyos1.x/apps/TOSBase.

Step 3: Display sensor readings on the controlling workstation.

(a) Copy the java program ListenSBT80v2.java to the following folder in your TinyOS installation:
/opt/tinyos1.x/tools/java/net/tinyos/tools.

(b) Compile by executing the command “javac ListenSBT80v2.java” inside the same folder.

(c) Set the MOTECOMM variable to read the USB port properly according to the TinyOS tutorial.

(d) Run the java application by executing the command “java net.tinyos.tools.ListenSBT80v2”.

This should produce a display of sensor readings from all 8 channels on the Cygwin window. These steps
are given to test the working of SBT80 and the same procedure is used to configure the WiEye sensors
[21].

In step 3.C, in order to configure the MOTECOM variable, first run the "motelist" command to get the
port number on which TelosB is connected. Once you get the port number, use the export command to
configure the MOTECOM variable. The command is “export MOTECOM=serial@COM4:telosb” or
“export MOTECOM=serial@COM4:telos”. The number after COM is the port number which is written 4
here [22].

