
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

TEACHING WIRELESS SENSOR NETWORKS
BY INCORPORATING REORGANIZATION ALGORITHMS INTO THE LABS

T. Andrew Yang
yang@uhcl.edu

Dinesh Reddy Gudibandi
dinesh_gudibandi@yahoo.com

Division of Computing and Mathematics
University of Houston – Clear Lake (UHCL), Houston, Texas

Abstract
Wireless sensor networks (WSNs) have emerged in recent years as a topic attracting significant
interest from both academia and industry. By completing a WSN lab, students can learn useful
concepts and skills, including network setup, protocols, data collection/processing, sensor
programming, developing and configuring WSN, etc. To effectively teach wireless sensor
networks, having students engaging in hands-on projects is as important as teaching them the
theories. Our goal is to build upon the source codes of an existing WSN method and design a set
of simulation and emulation labs, each incorporating a case study involving tasks such as
reorganization, secure routing, object tracking, Denial of Service attacks and counter-measures,
etc. Instead of creating a WSN from the scratch, students learn about WSN via tailoring a method
to incorporate interesting features into the existing source codes. In this paper, we propose to use
WSN reorganization as a case study and incorporate it into designing WSN simulation labs.
Starting with a given set of WSN papers, source codes, and reorganizaiton algorithms, students
are asked to incorporate some of the algorithms into the existing WSN method. Such projects
enable the student to gain in-depth understanding of how a WSN operates, and how the source
codes of an existing WSN method may be modified to enable reorganization of sensor nodes. A
sample lab incorporating WSN reorganization is presented as a demonstration of this approach.
Interested instructors may tailor the lab to accommodate other case studies for their classes.

1. Introduction
A wireless sensor network (WSN) is comprised of a set of sensor nodes coordinated to fulfill
some specific actions. Deploying a WSN requires iteratively programming a set of nodes,
positioning them in an area large enough to produce an interesting radio topology, and using them
to extract debugging and performance data [6]. As we have learned from experiences, it is often
challenging for a student with no prior experiences in WSN to deploy or test such a network. Our
goal is to develop a set of WSN labs that could be easily adopted by the instructor, and could be
used to help the students get started in testing and/or deploying wireless sensor networks.
Although both simulation and emulation may be employed when developing the labs, we focus
on simulation-based labs in this paper. Equipped with the source codes of an existing WSN
method, Optimized Communication and Organization (OCO) [5], our approach is to design a set
of labs, each incorporating a case study such as reorganization, secure routing, Denial of Service
attacks and counter-measures, etc., in WSN. Instead of creating a brand new WSN method from
the scratch, students learn about WSN via tailoring an existing method to incorporate interesting
features into the existing source codes. The labs may be used in a standalone WSN class, or
incorporated into other related classes such as Network Protocols, Advanced Operating Systems,
Network Security, and the Capstone Projects course.
In this paper, we focus on incorporating WSN reorganizaiton into the design of simulation-based
labs. Students are given the source codes of an existing WSN method and a survey of WSN
reorganizaiton algorithms. To complete their lab projects, the students are required to incorporate
some of the reorganizaiton algorithms into the existing codes (for intermediate level projects) or
to develop and implement their own reorganizaiton algorithms (for advanced projects in courses
such as a graduate WSN class). The projects enable the student to gain an in-depth understanding
of how a wireless sensor network operates, and how it may be reorganized when a need arises.

mailto:yang@uhcl.edu

mailto:dinesh_gudibandi@yahoo.com

Depending on the instructor’s interests, the same approach may be used to handle other WSN
case studies.
In the rest of the paper, we first survey related work in reorganizing WSNs. In section 3 we
present a case study, by first briefly introducing the OCO method, the requirements of WSN
reorganizaiton in various scenarios, an example reorganizaiton algorithm in OCO, and finally a
sample lab design incorporating the case study. Section 4 concludes the paper.

2. Reorganization of Wireless Sensor Networks
Once deployed, a WSN typically operates unattended. Furthermore, a WSN may be used in
hostile or inaccessible environments, such as in some military or rescue operations. The sensors
may even be deployed by using airplanes/artillery in a hard-to-reach territory, making it virtually
impossible to repair a node when it is damaged or run out of energy.
An important requirement of designing a WSN is to ensure continued operation even when some
of the nodes become unavailable. When a WSN is first deployed, most of the sensor nodes are
charged with full energy. Because data traffic are typically routed from the sensors to the sink
(aka. the base station), more energy is consumed by the nodes near the sink, making that
neighborhood more susceptible to energy depletion and failure. A reorganization algorithm can
ensure the WSN could recover from damage, loss, or degradation of some of its nodes.
The topology of a network can be classified as either flat or hierarchical. In a flat network, all the
sensors have similar roles [3]. Each node typically plays the same role and collaborate together to
perform the sensing task [1]. In a hierarchical sensor network, nodes may be assigned different
roles and, depending on their respective levels in the hierarchy, the processing at a particular node
may differ. LEACH based methods [2] form hierarchical sensor networks.
Reorganization in a flat network is generally simpler, because all nodes are at the same level and
a failing node may be easily replaced by another node. A WSN with a hierarchical structure,
however, is more difficult to reorganize in the event of node failure. Depending on the failing
node’s role, the reorganization requires not only choosing the proper node to replace the failing
node, but also reorganizing the network topology. Efficient Data GathEring (EDGE) [4] is a tree-
based protocol. The tree created by EDGE will be reconstructed upon node failures or adding of
new nodes. When a node is aware of the absence of its parent, it immediately switches to a new
parent by choosing the most appropriate parent from its PC (parental candidate) table1.

3. The Case Study: WSN Reorganization
In this section we discuss the OCO method (Optimized Communication and Organization) [5], its
reorganization algorithms and their respective requirements, and a sample lab project that
incorporates WSN reorganization as a case study.
OCO is a WSN method that ensures maximum accuracy of target tracking, efficient energy
dissipation, and low computation overhead [5]. An OCO-based WSN is built with self-organizing
capabilities, meaning that when some of the sensor nodes become unavailable, the WSN may
reconfigure itself to continue its mission. As shown in Figure 1, the OCO method includes four
phases: position collection, processing, tracking, and maintenance. In the position collection
phase, the base station collects positions of all reachable nodes in the network. Figure 2 shows
snapshots of the position collection phase during simulation using OMNET++2. The red small

1 Parental candidate (PC) table is a table that maintains the pairs of candidate IDs (i.e., those that can be a potential

parent) and metrics.
2 The OCO codes were developed in C++ for the OMNeT++ network simulation environment. As stated at the

omnetpp.org website, OMNeT++ is a public-source, component-based, modular and open-architecture simulation
environment with strong GUI support and an embeddable simulation kernel. Its primary application area is the
simulation of communication networks, and because of its generic and flexible architecture, it has been successfully
used in other areas like the simulation of IT systems, queueing networks, hardware architectures, and business
processes as well.

circles in Figure 2 are nodes already being recognized by the base (the bigger circle). As shown in
the diagrams (from left to right), more nodes are recognized when the process continues.
The processing phase identifies redundant nodes, detects border nodes, finds the shortest path
from each node to the base, and assigns various roles to the nodes. The process of cleaning up
redundant nodes results in a certain percentage of the nodes being included in the network (the
active nodes), while the others (the redundant nodes) become inactive to conserve energy. Figure
3 include two images illustrating the process of cleaning up redundant nodes. Image a is the
initial sensor network, showing numerous nodes in the sensing area; image b is the sensor
network after redundant nodes have been removed.
In the tracking phase, the sensors all work together to detect and track intruders. The maintenance
phase involves re-organizing the network when, for example, a change in the topology of the
network occurs, or some of the sensor nodes become dead. Some of the redundant nodes
previously labeled as inactive may become active during the reorganization process.

Figure 1: OCO phases and their interactions

Figure 2: The position collection phase

(a) before (b) after

Figure 3: Removing redundant nodes

3.1. Reorganization algorithms in OCO and the Requirements
There are different types of reorganization algorithms in OCO, each of which is to be invoked to
reorganize sensor nodes under a particular circumstance. As outlined in Table 1, when a given
condition is true, certain reorganization algorithm is invoked; based on the underlying
assumptions (if any), certain outcome is anticipated from running a given algorithm.

Table 1. Types of reorganization algorithms and the respective scenarios
Condition Assumptions Outcome
Algorithm 1: Border node reorganization
When a
border
node is
dead or
about to
die.

A1: The Base station has the map of all nodes (active or
redundant) and the paths of all active nodes to the Base
station.

A2: Because the random deployment of the sensor nodes,
for a given active node, there is a high probability that
several redundant nodes may be lying around the dead

One (or more)
redundant node
close to the dead
node (B) takes
place of B, by
filling up the gap

node. left by B.
Algorithm 2: Forwarding node reorganization
When a single
forwarding
node is dead or
about to die.

A1
A2

Case A: One (or more) neighboring node (N) near the dead node (D) is
chosen to be the new parent of D’s children.

Case B (When Case A does not qualify): One (or more) redundant node
(R) near D is made active and become the new parent of D’s children.

Algorithm 3: Local reorganization
To reorganize a
region of the
network when
several nodes in a
sub-tree are
reported to be
dead or about to
die.

A1
A2
A3: All the border nodes are sequentially

ordered, meaning the Base is able to find out
the two border nodes on the two sides of a
given border node.

A4: For a given sub-tree, the Base can easily
figure out the set of border nodes (the leaves)
of that sub-tree.

Several redundant nodes
(R) in the region are made
active and become the
new parents of the
children of the dead
nodes (D), so that the
whole area affected by D
is covered by the newly
constructed sub-trees.

Algorithm 4: Global reorganization
If there are a considerable number of dead sensor nodes in
a WSN, the entire network may need to be reorganized.

The WSN is reorganized globally,
repeating the first 3 steps of OCO.

3.2. An example reorganization algorithm in OCO

(a) before (b) after

Figure 4. Border node reorganization
(invoked by the death of border node #197, which is replaced by redundant node #76)

Due to limitation of space, we cannot include in this paper all the reorganization algorithms as
listed in Table 1. As an example, a simple reorganization algorithm is presented below; it is used
to reorganize an OCO-based WSN when a single border node is dead.
Border node reorganization algorithm

(1) Find one or more redundant nodes r around dead node n such that the new sensing range of r
can cover the sensing range of the dead node n.

(2) Put the new nodes to list l.
(3) For each of the nodes in list l, form paths to the Base.
(4) The Base then informs each of the nodes affected by the reorganization about its new parent

and children nodes.
Figure 4 illustrates the impact of running that algorithm when a border node is dead. As shown in
Figure 4a, the border node reorganization algorithm is applied when it is detected that border node
#197 is dead. The reorganizaiton algorithm selects a redundant node (#76) near the dead node, and
uses it to replace the dead border node. As a result, the dead node is marked as dead (as shown in
Figure 4b) and removed from the network. The broken border line caused by node #197 being dead is
successfully ‘patched’ by adding node #76 as a new border node.

3.3. Incorporating the case study into the labs
In this subsection, we present an example simulation lab that incorporates WSN reorganization.
As stated above, reorganization is chosen as a case study of wireless sensor networks. Depending
on the instructor’s interests, alternative case studies involving, for example, routing, object
surveillance or tracking, Denial of Service attacks, etc., may be used to design the labs.

Lab Title: Testing or developing reorganization algorithms to reorganize sensor nodes in a wireless
sensor network.

Target Classes: The lab may be used in upper level undergraduate classes like Network Protocols,
Wireless Sensor Networks, etc., or in graduate classes involving Wireless Sensor Networks.
Learning objectives: Students will learn the following after having successfully completed the lab.

• How a wireless sensor network operates in general.
• How sensor nodes are organized into a wireless sensor network.
• How different roles are assigned to the various nodes in the same wireless sensor network.
• How redundant nodes close to the dead node attain connections to the children of the dead

node.
• How different reorganization algorithms are invoked to handle different kinds of dead nodes.
• How different reorganization algorithms may be developed to handle different conditions.

Tools Utilized: Visual Studio, OMNeT++ network simulator, and the OCO codes.
Requirements: Each student is given the OCO source codes, the relevant papers, the reorganization
algorithms, and the related document explaining under what condition a particular reorganization
algorithm would be invoked. Depending on the level of difficulty of the project assigned to a student,
the student is required to complete one of the following tasks:

a) Intermediate level (e.g., upper-level undergraduate students) - Students are required to
incorporate the given reorganizaiton algorithms into the existing OCO codes. Anticipated
Outcome – Source program(s) implementing the algorithms, screen output, and a demo of the
implemented programs executing in the OMNET++ simulation environment.

b) Advanced level (e.g., advanced undergraduate or graduate students) - Students are required to
test the reorganization algorithms, and to develop their own reorganization algorithms and
integrate them into the OCO codes. Anticipated Outcome – Design of the new set of
reorganization algorithms, the source program(s) implementing the algorithms, screen output,
and a demo of the implemented programs executing in OMNET++.

Problem classification: The application can be classified as a study and programming project, because
it involves studying papers and source codes, and developing/implementing algorithms.
How it may be implemented in the lab: Students will use Visual Studio to revise the existing OCO
codes, and incorporate the reorganizaiton algorithm(s) into OCO.
Level of difficulty: The level of difficulty of the project is intermediate (when implementing a given
algorithm) or advanced (when designing and implementing a new algorithm).

Grading criteria and methods: Grades mainly depend on the successful development and
implementation of the reorganization algorithm(s), as well as documentations, presentations, etc.

Students’ experiences: As reported by students, working on the labs allows the students to learn the
fundamentals of WSN with respect to how a WSN works, how the nodes are classified as a border
node, forwarding node, etc., and how sensed data are aggregated and sent to the controlling station.
They also have learned the importance of reorganization in the WSN, and how to use the OMNeT++
network simulator. Besides, the students have reported that their overall programming skills have
improved.

4. Conclusion and Future Work
By focusing on a case study when designing wireless sensor networks lab projects, we present a
feasible approach of including hands-on simulation projects into a class, providing students the
opportunities to develop in-depth understanding of how a wireless sensor network operates, and
how to modify an existing WSN method to incorporate new algorithms. Instead of requiring the
students to develop a wireless sensor network from the scratch, our approach provides the
students the source codes of an existing algorithm, allowing the student to develop in-depth
understanding of WSN by engaging in adding additional features into the existing WSN method.
For beginning or intermediate students, the reorganization algorithms may be given to them; the
anticipated outcome is the successful implementation and integration of the given algorithm(s)
into an existing system. For advanced students, the project may involve having the students
develop their own algorithms; the anticipated outcome is the design and implementation of new
algorithm(s), and the integration of the algorithm into an existing system. Both options allow the
students ample opportunities to learn about the fundamentals of networking, programming,
design and analysis, and advanced knowledge of wireless sensor networks.
This project may be extended to cover other case studies, such as network routing, attacks and
counter-measures, etc. In addition, the case-study based approach may be adapted to emulation
based labs, in which actual devices are used to construct a sensor network.

Acknowledgement
The authors are partially supported by the UHCL Faculty Research Support Fund, the Texas
Advanced Research Program, and the National Science Foundation (DUE- 0633469).

References

[1] Al-Karaki, J. N., and A. E. Kamal. “Routing Techniques in Wireless Sensor Networks: A
Survey”. IEEE Wireless Communications, Vol. 11, Issue 6, pp. 6-28, Dec. 2004.

[2] Heinzelman, Wendi Rabiner, Anantha Chandrakasan, and Hari Balakrishnan. “Energy-
Efficient Communication Protocol for Wireless Microsensor Networks”. Proceedings of the
Hawaii Int. Conf. on System Sciences, 2000.

[3] Ma, Y., S. Dalal, M. Alwan, and J. Aylor. “ROP: A Resource Oriented Protocol for
Heterogeneous Sensor Networks”. University of Virginia, Virginia Tech Symposium on
Wireless Personal Communications, 2003.

[4] Thepvilojanapong, Niwat, Yoshito Tobe, and Kaoru Sezaki. “On the Construction of Efficient
Data Gathering Tree in Wireless Sensor Networks”. IEEE Communications, 2005.

[5] Tran, Sam Phu Manh, and T. Andrew Yang. “OCO: Optimized Communication &
Organization for Target Tracking in Wireless Sensor Networks”. Proceedings of the IEEE
Int. Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing. 2006.

[6] Werner-Allen, Geoffrey, Patrick Swieskowski, and Matt Welsh. “MoteLab: A Wireless
Sensor Network Testbed”. In Proceedings of the Fourth International Conference on
Information Processing in Sensor Networks (IPSN'05), Special Track on Platform Tools and
Design Methods for Network Embedded Sensors (SPOTS), April 2005.

DEVELOPMENT OF EMULATION-BASED PROJECTS
FOR TEACHING WIRELESS SENSOR NETWORKS

T. Andrew Yang Deepesh Jain Bo Sun
Division of Computing and Mathematics

University of Houston – Clear Lake
Houston, Texas 77058

yang@uhcl.edu deeptansh@gmail.com

Dept. of Computer Science
Lamar University

Beaumont, TX USA 77710
bsun@my.lamar.edu

Abstract
Wireless technologies have achieved dramatic growth in recent years. Wireless sensor
networks (WSN), in particular, have captured the interest of various sectors. The
increasing popularity of WSN has motivated universities to include the subject in their
curricula. Effective learning and teaching of WSN, however, require the students to gain
hands-on experiences in developing WSN projects, which help the students to understand
the strength and limitations of this new technology. In this paper we report our
experience of teaching WSN by requiring students to develop emulation-based labs
following pre-designed template projects. The projects make it easier for the instructor
adopt WSN labs in the teaching, and help to smooth the student’s learning curve.

1. INTRODUCTION
A wireless sensor network (WSN) is a network made of a set of independent sensor
nodes. The sensor nodes are self-contained units consisting of a battery, a radio module,
sensors, and a low-speed on-board processor [1]. Normally the unit that consists of the
radio module and the on-board processor is called mote. The most essential feature of
wireless sensor networks is that they are embedded in the real world. Sensors detect the
world’s physical nature, such as light intensity, temperature, sound, or proximity to
objects [2]. A typical WSN consists of a set of nodes collecting data from the
environment; these nodes transmit the collected data to a base station. The base station is
generally a computer connected to a gateway, which is a device that collects data from
the sensors. An application running on the base station analyzes the received data,
performs appropriate computation, and displays the information on the user screen.

Deploying a WSN requires iteratively programming a set of nodes, positioning them in
an area large enough to produce an interesting radio topology, and using them to extract
debugging and performance data [3]. It is typically difficult for a student to understand a
new field of technology with no prior experience; the same is true with WSN. For a
beginner it is hard to deploy or test such a network. Our goal is to develop a set of WSN
projects that could be easily adopted by the instructor, and could help the students get
started in deploying sensor networks.

Instead of relying on simulation software, this paper focuses on emulation-based projects,
by using actual devices (motes, sensor boards, et al.) when designing labs. The reason
that most WSN projects are simulation-based is that implementation of WSN projects
with actual devices is more difficult and demanding. Actual hardware devices are needed,

mailto:yang@uhcl.edu�

thus increasing the cost and complexity; in contrast, the simulation approach requires
only the simulation software. Emulation becomes particularly complicated when a large
number of sensors are deployed. Another limitation is battery power constraint; it may be
cumbersome to replace the battery while the WSN is already deployed. The sensors, for
example, may be hard to reach.

The rest of the paper first discusses the hardware/software requirements of developing
WSN labs; it then presents the template projects that we have developed.

2. REQUIREMENTS FOR DEVELOPING WSN LAB PROJECTS
The hardware components of a sensor network typically include the following:

• A mote is a low-powered computer with a radio transmitter capable of forming ad
hoc communication with other motes.

• A sensor board is a chip on which one or more sensors are present.
• A gateway is a device responsible for injecting queries into the sensor network,

gathering responses from the network, and presenting the responses to the user’s
station. It communicates with the WSN through short-range wireless links, and
interacts with the user directly or remotely through a wired or wireless network.

• The monitoring workstation is a computer with required compatible software
installed, and is used by the user to configure the WSN, to submit queries to the
network, and to view the data collected by the network.

 The following are the software requirements:
• Typically a special operating system such as TinyOS is used for the motes.

TinyOS is an open-source development environment for sensor applications.
• The NesC language is commonly used to write the programs for motes. Therefore

the NesC editor and compiler are needed.
• The program installer software is required to install the program into the motes.
• A packet analyzer is an application running on the base station to analyze the

packet, perform computation on raw data, and display information on the screen.

Generally a developer only needs to install the TinyOS package to get the above listed
software. Although a WSN may maintain a database to store the collected data [4], in this
paper we deal with simple projects that do not need a database.

3. DEVELOPMENT OF LAB PROJECTS
Wireless sensor networks may be classified into three classes: data collection,
surveillance, and object tracking [5]. In this section we discuss two projects: Project 1
demonstrates the use of WSN for data collection, while project 2 is for surveillance.

3.1. Project 1 - data collection from the environment
This project involves the development of a WSN for one of the most common
applications, i.e., data collection from the environment.

Project Title: Simple Data Collection using Wireless Sensor Networks

Target Classes: This project may be used in graduate or upper level undergraduate
classes like Network Protocols, Wireless Sensor Networks, et al.

Learning objectives: Students will learn the following after completing the lab.
• How a wireless sensor network operates in general
• How to compile a NesC program
• How to install the compiled program in motes
• How to plug the sensor board onto the mote if it is not soldered
• How to configure and run the application to receive data from the network

Tools Utilized: Desktop computer, motes (Mica-2), sensor boards (MTS 3120),
gateway (MIB 510), the MoteWorks WSN development package

Requirements: Each student is
given the source codes of example
applications (available in the
MoteWorks software package) and
the relevant documentations of the
software packages. A student is
required to complete one of the
following tasks:

a) Beginning level - Students
perform two tasks. First, collect
data from the environment (e.g.,
temperature, light, et al.) using a
single node connected to the base
station, i.e., without utilizing the
radio communication link. Second,
develop a two-mote WSN. One of
the motes is connected to the
gateway, while the other mote is
equipped with sensor boards,
which collect data and transmit
them to the mote on the gateway,
which further transmits the data to the base station. Wireless radio communication is
enabled in the second case. Figure 1 illustrates a similar setup.

b) Intermediate level - Students are required to collect data from the network using
multi-hops, i.e., data is collected by node1, transmitted to node2, which further transmits
the data to the mote attached to the base station.

Problem classification: The application can be classified as a study and programming
project; it involves studying the documentations and codes, and developing/implementing
the network.

How it may be implemented in the lab: Students first install the software package on
a desktop computer. They need to configure the environment variables and compile the
program, and then install the program into motes. Connect the batteries and the sensor
boards to the motes and turn them on. Connect the gateway to the base station and place a
mote on the gateway. Compile and execute the application on the base station.

Level of difficulty: The difficulty level is easy (case a) or intermediate (case b).

Grading criteria and methods: Grades mainly depend on the successful deployment

Figure 1. Design of a WSN Detecting Human

Presence

and implementation of the network(s), as well as documentations, presentations, et al.

Students’ experiences: As reported by students, working on the projects allows the
students to learn the fundamentals of WSN with respect to how a WSN works, how the
nodes are configured and programmed, and how sensed data are aggregated and sent to
the base station. They also had learned the significance of limited battery power, runtime
battery replacement problem, and the short radio range issue when moving nodes at run
time. Besides, the students reported that they had learned the concepts of new operating
system (TinyOS) and programming languages (NesC).

3.2. Project 2 - human detection sensor network
This project helps to deploy a WSN that is capable of detecting the presence of humans.

Project Title: Detection of Human Presence using Wireless Sensor Networks

Target Classes: The lab project may be used in graduate or upper level undergraduate
classes like Network Protocols, Wireless Sensor Networks, et al.

Learning objectives: Students will learn the following after completing the lab.
• How a wireless sensor network operates in general
• How to analyze the raw data collected from the network
• How to develop an algorithm to detect the presence of humans
• What kind of sensor is required to detect the presence of a human or vehicle
• How to program a base station application to apply the human detection algorithm

Tools Utilized:
• The TelosB (TPR2400) manufactured by Crossbow, Inc. is used as the mote.
• The WiEye sensor board manufactured by EasySen, Inc. is used. It has long-range

passive infrared (PIR) sensor with 90-100° wide detection cone, 20-30 feet
detection range for human presence. As shown in Figure 1, the sensor board is
mounted on a TelosB mote to form a node.

• No special gateway device is needed. The gateway function is implemented by
having a TelosB mote directly connected to the base station.

• The base station is a typical desktop computer with Cygwin and Java VM.
• Cygwin is used to configure the WSN, including installing the application into

motes, and invoking a base station application.
• Programmer’s Notepad is used to write, compile and debug the NesC program,

which is installed in the motes to collect data from the environment.
• Java SDK 1.6.0 is used to develop a Java application, which collects data from the

network, processes the data, and sends the output to the user screen.

Requirements: Each student is given the source codes of example applications,
available on the EasySen website (http://www.easysen.com/support/SBT80v2), relevant
documentations, and the needed software. Students first develop a human detection
algorithm and later implement that algorithm to program the base station application.
Appropriate sensors should be used to collect raw data from the environment. The base
station application, programmed as a Java application, will analyze the data to detect the
presence of humans in the environment. A mote directly connected to the base station is
used as the gateway, which collects data from the network and transmits them to the base

http://easysen.com/products.htm�

station. Each node in the sensor network consists of a mote powered by battery and a
WiEye sensor board from EasySen, Inc. Figure 1 illustrates the design of the system.

Developing the human detection application –
Sample Java application for reading sensor channels
of the SBT80 sensor over the TelosB motes are
available at the EasySen website. When developing
the application, students may modify those codes to
suit the need of the project. The application runs on
the base station to collect data from the sensor
network, and analyze the collected data to detect the
presence of humans. The initial data collected from
the environment (without human presence) is used to
set the threshold value (representing the condition of
no human presence). Later if a human comes in the
vicinity of the sensor it compares the current value
with the threshold value to make the decision of
human presence. The algorithm is show in Figure 2.
If no human is present in the vicinity of the sensor, a
message saying “No object detected” should be
shown on the screen. If a human is detected, a
message saying “Object detected!” should be shown.
Figure 3 is a sample output screen of the application.

Problem classification: The application can be
classified as a study and programming project,
because it involves studying documentations and source codes, and developing the
algorithm and the network.

How it may be
implemented in the lab:
Students install the software
package on a desktop
computer. They need to
develop and implement the
object detection algorithm.
Follow the programming
sequence as outlined in the
EasySen documentation to
configure the environment
variables, compile the
program, and install the
program on to the motes.
Note:
http://sce.uhcl.edu/yang/Pro
cedureProgrammingEasySenSensors.htm consists of a summary of the procedure of
programming the EasySen sensors.

Figure 2. Flowchart of the Java

Application

Figure 3. Sample Output of the Java Application

Detecting Human Presence

http://sce.uhcl.edu/yang/ProcedureProgrammingEasySenSensors.htm�

http://sce.uhcl.edu/yang/ProcedureProgrammingEasySenSensors.htm�

Level of difficulty: hard

Grading criteria and methods: Grades mainly depend on the successful
implementation of the algorithm and deployment of the sensor network, as well as
documentations, presentations, et al. The algorithm shown in Figure 2 can be used as a
scale to compare the algorithms developed by the students.

Students’ experiences: The project allowed the students to learn the use of WSN for
surveillance. They developed understanding of related issues such as how to develop an
algorithm according to the requirements, and how the collected data are analyzed.

4. DISCUSSION AND FUTURE WORK
Development of hands-on labs provides in-depth understanding of the subject. In
computer science courses, too often simulation is the chosen approach when it comes to
lab projects. Due to the cost and difficulty of implementing a wireless sensor network
using actual devices, emulation is seldom the approach chosen by instructors when
developing class projects. In this paper, we present both basic and intermediate-level
sensor network projects, which may be adopted by the interested instructor to bring
hands-on emulation experiences into his/her classes, therefore providing opportunities to
develop realistic wireless sensor network applications. Students learn how to modify an
existing WSN application to incorporate new algorithms. We have explained how a
student with no prior knowledge of WSN can develop a network from the scratch. We are
currently developing algorithms to track the movement of humans and vehicles. Part of
our future work is to incorporate the new algorithms into labs, which should be suitable
for students interested in learning more advanced concepts of wireless sensor networks.

ACKNOWLEDGMENT
The authors are partially supported by the National Science Foundation, and the Texas
Higher Education Coordination Board’s Advanced Research Program.

REFERENCES

1. Tran, S.P.M. and T.A. Yang. Evaluations of target tracking in wireless sensor
networks, in Proceedings of the 37th SIGCSE technical symposium on Computer
science education SIGCSE '06, ACM SIGCSE Bulletin. 2006.

2. Raghavendra, C.S., K.M. Sivalingam, and T. Znati, Wireless Sensor Networks.
ERCOFTAC Series. 2004: Springer.

3. Werner-Allen, G., P. Swieskowski, and M. Welsh, "MoteLab: A Wireless Sensor
Network Testbed," in Information Processing in Sensor Networks, 2005. IPSN 2005
Fourth International Symposium, 2005, pp. 483- 488.

4. Salatas, V., Object tracking using wireless sensor networks. MS Thesis, Naval
Postgraduate School: California. 2005.

5. Singh, I., Real-time Object Tracking with Wireless Sensor Networks. MS Thesis,
Luleå University of Technology. 2007.

MODULE-BASED COURSEWARE FOR TEACHING SECURE WIRELESS SENSOR

NETWORKS

Bo Sun, Lawrence Osborne T. Andrew Yang

 Department of Computer Science Division of Computing and Mathematics
 Lamar University University of Houston – Clear Lake

Beaumont, TX 77713 U.S.A. Houston, TX 77058 U.S.A.
{bsun, ljosborne}@my.lamar.edu yang@uhcl.edu

ABSTRACT
Wireless Sensor Networks (WSNs) have become an ideal
example software-hardware system for modern teaching
and learning. Although there is an increasing trend to
incorporate the principles of WSNs and their security
issues into the mainstream undergraduate and graduate
Computer Science curricula, it is still challenging to teach
suitable WSN courses mainly because of the complexities
of WSNs and the lack of easy-to-use course modules. Our
goal is to develop practical course modules that can
enable experimental learning and technology-based
education. Specifically, the modules range from the basic
software and hardware of WSNs to commonly used WSN
services. To familiarize students with TinyOS
programming, a hands-on project, the implementation of a
multihop data collection tree protocol, is included in the
modules. Summative evaluation was conducted when the
modules were used in teaching a Computer Science
course in WSNs. The evaluation results are discussed in
this paper.

KEY WORDS
Wireless Sensor Networks, Module-based Courseware,
Security

1. Introduction
A wireless sensor network (WSN) is made of a set of
sensor nodes, each of which is a self-contained unit
consisting of a battery, a radio module, sensors, and a
low-speed on-board processor [27]. Normally the unit that
consists of the radio module and the on-board processor is
called mote. The most essential feature of wireless sensor
networks is their being embedded in the real world.
Sensors detect the world’s physical nature, such as light
intensity, temperature, sound, or proximity to objects
[19]. A typical WSN consists of nodes collecting data
from the environment and transmitting the collected data
to a base station. An application on the base station
analyzes the received data, performs appropriate
computation, and displays the results on the user screen.

Combining advanced technologies from multiple
Computer Science subject areas, including Computer

Networks, Operating Systems, Software Engineering, and
Embedded Systems, WSNs have become an ideal
example software-hardware system for illustrating
fundamental concepts; the principles of WSNs and their
security issues have been incorporated into the
mainstream undergraduate and graduate Computer
Science curricula. Unfortunately, currently offered WSN
courses lack a necessary component in science and
technology education - experimental learning [7], which
involves students in hands-on projects and is usually
necessary for students to achieve effective learning in
engineering and technology courses. Existing textbooks
[14, 32] of WSNs also mainly focus on basic concepts
and theories and are difficult for students (especially
undergraduates) to understand.

In this paper, we present a module-based courseware to
teach WSNs and their security issues. Our goal is to
develop practical course modules that can enable
experimental learning and technology-based education.
Different from most existing WSN courses that are often
offered as special research topics, our courseware covers
both theoretic and practical aspects of WSNs and is
suitable for both undergraduate and graduate students in
primarily teaching oriented universities and colleges.

To decide the topics and the content of our course
modules, we selected a suite of well-known papers related
to WSNs, and investigated whether the ideas presented in
those papers have been implemented in TinyOS [23],
which is the predominant operating system for supporting
wireless sensor networks applications. By including both
the concepts and their actual implementations, we have
developed course modules that not only cover the
concepts of a specific protocol, but also provide students
hands-on experience to program sensor nodes to run the
protocol. Specifically, we have developed nine modules:
• Introduction to Wireless Sensor Networks introduces
basic principles and characteristics of WSNs.
• TinyOS introduces the predominant open source
operating system for WSNs – TinyOS [23].
• Energy Management introduces how energy, the
most restricted resource in WSNs, is managed in TinyOS.

• Radio and Medium Access Control (MAC) introduces
unique radio characteristics in WSNs. Based on these
characteristics, we introduce one of the most popular
MAC protocols - B-MAC [18].
• Wireless Link Estimation introduces how to perform
wireless link estimation to estimate the quality of wireless
links. Wireless link estimation is necessary to indicate the
quality of a wireless link in order to implement efficient
routing [5].
• Data Collection and Dissemination module, based on
wireless link estimation, introduces how to perform data
collection and dissemination [13].
• Security of Wireless Sensor Networks introduces
basic security issues and their solutions in WSNs [17].
• Localization and Secure Localization introduces
localization [21], one of the most widely studied problems
in WSNs, and its security issues and solutions [15].
• Aggregation and Secure Aggregation introduces data
aggregation [11] and its security problems and solutions
[22]. Aggregation is one of the most common approaches
to save energy in WSNs.

Our design of the course modules is based on the
following philosophy: (a) Teaching WSNs should focus
on both the fundamental principles and practical skills.
Students should have opportunities to practice important
concepts learned from WSN classes. (b) The design of the
modules should enable easy integration into teaching
fundamental Computer Science courses, including
Operating Systems, Computer Networks, Wireless
Communications, and Embedded Systems.

Therefore, unlike existing WSN courses and textbooks,
our designed modules focus on the system aspects of
WSNs that aim at resolving real world problems and
creating practical solutions. To make the designed course
modules practical and to cover the state-of-the-art
technologies in WSNs, we designed our course contents
based on the current release of TinyOS 2.x [12, 23].
Major concepts and algorithms are included to prepare
students to understand the design principles of TinyOS.

To enhance students’ knowledge with hands-on
experience, we also developed a practical project, the
design and implementation of a multihop data collection
tree protocol, to enable students to practice important
concepts and protocols of TinyOS. Students can further
collect interesting data, for example, ambient light and
temperature, based on their developed protocol.

2. Research Assumptions and Objectives

First, we assume that the current research trend of
wireless sensor networks make them ideal to be integrated
into Computer Science curricula. As a vivid example that
students can touch and play with, WSNs provide a perfect
combination of both operating systems and computer

networks, which are required courses by ABET [1] for
Computer Science majors. Our teaching experiences in
operating systems and computer networks illustrate that it
is usually challenging for students to understand relevant
topics in these areas because traditional operating systems
(like UNIX and Linux) and the Internet are built upon a
huge amount of knowledge and their principles have
become very complex. As a newly emerging and
relatively simple technology, WSNs can significantly
promote students’ understanding of basic principles
introduced in operating systems and computer networks.
In addition, WSN projects involve the development of
software applications, which provide a context for
students to learn about programming languages and
software development for wireless devices.

We also assume that the current research and existing
literature in WSNs makes it a daunting challenge for
faculty members and students in small and medium sized
universities to learn. Research oriented textbooks and a
simple collection of WSN papers are not suitable for
teaching-oriented institutions. Therefore, a collection of
suitable course modules with practical lab projects are
necessary for both faculty members and students to grasp
the principles of wireless sensor networks.

Motivated by the above concerns, we focus on the
following objectives in this paper: (a) Having noticed that
students may become overwhelmed by the massive
amount of information in WSN research, we therefore
present courseware modules which are relatively
complete and cover fundamental topics in the areas of
WSNs. (b) Our proposed modules avoid complex theories
and focus on the introduction of basic principles in
WSNs. To realize this, we accompany most protocols
with example TinyOS implementations to facilitate
experimental learning - to provide students with hands-on
experience about how to build a wireless sensor network.

3. Related Work

WSN courses have been proposed by instructors in many
colleges and universities. However, in most of those
courses, only a reading list is presented and students are
required to read papers and give research presentations.
The final projects in these courses usually require writing
a proposal illustrating research ideas. This kind of
instruction format may be suitable for research oriented
institutes, because in these institutions most students
taking WSN courses aim at a Ph.D. degree. However, for
most students in small universities or teaching-oriented
colleges, reading papers alone may become a daunting
task, which makes it challenging for students to grasp the
principles of wireless sensor networks and their security
issues. Our goal of creating a practical set of WSN course
modules suitable for incorporating WSN principles into
various courses cannot be achieved by simply compiling a
list of the existing WSN papers and research projects.

There are also commercially published textbooks on the
subject of wireless sensor networks and their security
issues [14]. Unfortunately, like the existing WSN courses,
most of those textbooks are research oriented. They cover
the important research topics in WSN fields and focus on
abstract ideas, typically lacking real world examples of
WSN applications. It is therefore difficult for students to
grasp the underlying principles of developing WSN
applications.

4. A Practical Module-Based Courseware

Following our design philosophy, we first compiled a list
of important WSN research topics and then searched
highly-selective and premier WSN conferences and
journal articles for state-of-the-art solutions. For example,
the ACM Conference on Embedded Networked Sensor
Systems (ACM SenSys) [2] is a premier conference
focusing on practical and system related issues in the area
of networked and embedded sensors. Many of our course
contents were selected from the research results published
in SenSys. Other important conferences and resources
focusing on WSN system issues include USENIX
Symposium on Operating Systems Design and
Implementation (OSDI) [29], USENIX Symposium on
Networked Systems Design and Implementation (NSDI)
[28], TinyOS Extension Proposals (TEPs) and other
documentation [24], TinyOS mailing list, and relevant
technical reports. Moreover, because University of
California Berkeley and Stanford University have
dominated the development of TinyOS and their relevant
protocols, relevant web sites from these universities also
provide useful information and resources.

We adopted XubunTOS [30] as the platform for students
to develop real world WSN solutions. Built from Xubuntu
and TinyOS packages, XubunTOS greatly simplifies the
installation of TinyOS by using a live CD. Regarding the
specific WSN hardware, MicaZ and TelosB from
CrossBow [31] were used as the wireless motes, MTS300
was used as sensor boards to collect ambient light and
temperature, and MIB520 was used as the gateway to
program motes.

4.1 Module One - Introduction to Wireless Sensor

Networks

This module introduces the basic principles and
characteristics of WSNs. Specifically, we start with real
world examples to explain WSNs and their operational
challenges, including energy efficiency, limited storage
and computation, low bandwidth and high error rates, etc.
MicaZ motes and TelosB motes are used as hardware
platforms to give students more concrete examples.

4.2 Module Two - TinyOS

This module introduces the dominant open source
operating system for WSNs - TinyOS. TinyOS differs
from traditional operating systems in that it is designed as
a lightweight operating system for achieving high
efficiency in embedded systems, and therefore has no
heavyweight kernel, no process management, and no
virtual memory. TinyOS is little more than a non-
preemptive scheduler. A quick look at the kernel code is
necessary to master important concepts in TinyOS. Our
designed module takes sample codes from the TinyOS 2.x
kernel [26] to illustrate important ideas. These ideas
include how TinyOS is designed to support different
hardware platforms (MicaZ, Mica2, TelosB, Iris, etc.),
how TinyOS is designed to support different hardware
chips (MCU, radio, etc.) for a specific platform, how the
data link protocol for ChipCon’s CC2420 [3] and CC1000
[4] chips are designed and implemented, how the timer
system is designed and implemented, and how the serial
communication is designed and implemented.

TinyOS source codes provide many example applications,
which can serve to illustrate the nesC programming
language. Usually these applications consist of many
wired components which can be utilized to illustrate the
concept of object oriented design and implementation in
software engineering. We use an example application that
samples two sensors [9] to illustrate how different
components interact with each other through commands
and events. This example can facilitate the understanding
of wire, provide and use in TinyOS components. This can
also show the concepts of modules and configuration.

To illustrate networking in TinyOS V2, message t, an
important abstraction, is used; it facilitates interactions
among different link layers in wireless networks. Each
link layer can define its own header, footer, and metadata
structures. We use CC1000 and CC2420 as the example
hardware to illustrate this concept.

Several representative WSN applications were adopted as
vivid examples to facilitate students to deepen their
understanding of TinyOS and WSNs. Important concepts,
like packet forwarder, are often used in the TinyOS
tutorial [25]. However, at this moment there are no
specific figures to illustrate how to run WSN applications
in a network environment. To fill this gap, we plot
different network topologies for each application and use
them in our course modules. All these network topologies
can be downloaded from WSN class website:
http://galaxy.cs.lamar.edu/˜bsun/wsn/wsn.html.

Specifically, we use the following applications:
• BaseStation - Listen – BlinkToRadio is an
application in which one mote periodically sends data to
the base station through one-hop wireless communication,
which can further transmit data through the Internet for
further analysis;

• Oscilloscope is also a data collection application
for one-hop WSNs, but it provides a GUI interface to
facilitate data display in the PC side;
• MultihopOscilloscope is a data collection
application for multihop WSNs, based on the Collection
Tree Protocol [5]. It also demonstrates the self-organizing
capabilities of WSNs;
• MViz is also a data collection application for
multihop WSNs, but it provides a GUI interface that can
generate the self-organized WSN network topology;
• Octopus is the most complex application we use
in our course modules. Besides providing data collection
functions, it also implements data dissemination functions
for multihop WSNs. Considering the fact that WSNs are
typically dynamic and network membership is not static,
Octopus also provides a more dynamic view of network
topology than that of MViz.

4.3 Module Three - Energy Management

Energy is the most stringent resource in WSNs, because
sensor nodes are typically battery powered, especially
when they are deployed in remote or hard-to-reach
locations. To facilitate the application development and to
avoid the explicit invocation of power control operations
from the applications, TinyOS 2.x has integrated power
management into its device drivers. Virtualized,
dedicated, and shared are three main resource arbitration
models for important resources like timer, bus, memory,
and Analog-to-Digital Converter (ADC). We also use
CC2420, Atmegal 128 Analog to Digital Converter, and
MTS 300 as the example chips to illustrate these
important ideas.

4.4 Module Four - Radio and Medium Access

Control

WSNs demonstrate unique radio communication patterns,
including radio irregularity, anisotropic signal strength,
and anisotropic packet loss ratio [33]. All these factors
have dramatic impact on higher layer protocols like MAC
and their design and implementation. In our course
modules, we use detailed experimental data to illustrate
the relevant concepts.

We start with the introduction to some basic concepts
about wireless communications, including signal, dB,
dBm, Received Signal Strength Indicator (RSSI), Link
Quality Indicator (LQI), and noise floor. These concepts
are frequently used in many WSN papers. We then
introduce MAC protocols which coordinate nodes to
access shared wireless channels. The essential
requirements of MAC protocols are energy efficiency,
effective collision avoidance, efficient channel utilization,
and scalability. We present a classification of MAC
protocols in order for students to have a high-level
conception. We focus on the introduction of Time
Division Multiple Access (TDMA) and Carrier Sense
Multiple Access (CSMA) protocols. Finally we introduce

the details of B-MAC, which is a core module
implemented in TinyOS. We focus on important concepts
including Clear Channel Access (CCA) and Sleep/Wake
scheduling using Low Power Listening (LPL), which are
unique to WSN design.

4.5 Module Five - Wireless Link Estimation

In this module, we first introduce why wireless link
estimation is necessary by showing details of the time
varying nature of a wireless channel. The data we use
come from the experiments with a real world WSN,
which vividly demonstrate the relevant features of a
wireless link.

We then introduce state-of-the-art link estimation
techniques. First, we focus on ETX – Expected
Transmission Count [6], whose purpose is to choose
routes with high end-to-end throughout and find paths
with the fewest expected number of transmissions.
Secondly, we focus on four-bit wireless link estimation
[8]. In this estimation, information from the physical
layer, the data link layer, and the network layer are all
integrated to estimate the quality of a link.

4.6 Module Six - Data Collection and Dissemination

Previously introduced modules lay the foundation for
important WSN applications. Data collection and
dissemination turn out to be the most basic and important
applications promised by WSNs. Many collection and
dissemination protocols have been proposed. However,
most of the proposals typically show merely basic ideas
and analysis of complexity and overhead of the proposed
protocol, lacking details about the implementation.

When designing lab projects for the WSN course
modules, we select the Collection Tree Protocol (CTP) as
the data collection protocol, which is a very popular tree-
based protocol implemented in TinyOS. CTP has received
a lot of discussion in the TinyOS email list. We then
introduce a data forwarding scheme which is tailored for
extremely low duty-cycle data forwarding applications.
Regarding data dissemination protocol, we select Trickle
[13]. Like CTP, Trickle is one of the most commonly used
protocols and has been implemented in TinyOS.

4.7 Module Seven - Security of Wireless Sensor

Networks

Similar to other types of networks, wireless sensor
networks are subject to various types of threats and
attacks. Because security has become one of the major
concerns to deploy WSNs in the real world, WSN course
modules are not complete without modules focusing on
WSN security. We start with the introduction of major
attack models targeted at WSNs. We then focus on the
TinySec protocol [10], which aims at providing message
integrity and confidentiality at the data link layer.

TinySec has also become an implemented module in
TinyOS. Our course module introduces the details with
respect to how TinySec is designed and implemented.

4.8 Module Eight - Localization and Secure

Localization

Localization is an important service for WSNs, because
many WSN applications require location information of
the sensor nodes. Furthermore, localization turns out to be
a challenging task for WSNs.

We first give a high-level picture of localization and a
classification of existing localization protocols - range-
based and range-free localization. We then introduce a
Minimum Mean Square Estimation (MMSE) based
localization solution, because MMSE based solutions can
summarize the basic ideas of most localization schemes.
In the course modules, we use simple mathematics to
show basic ideas of MMSE.

Based on MMSE, we then introduce the secure
localization problem and one popular solution to provide
correct location given malicious attacks [15]. We show
how to derive a set of consistent location references and
illustrate how to retrieve a set of good location references.

4.9 Module Nine - Aggregation and Secure

Aggregation

Data aggregation has been proven to be an important
method to reduce communication overhead and to save
energy for WSNs. To address this need, we first introduce
why we need aggregation - to suppress redundant
messages and save energy. To illustrate this idea, we use a
detailed example - counting how many nodes exist in a
large-scale WSN; the example was taken from the Tiny
AGgregation Service (TAG) approach [16]. We then
move to general aggregation primitives - minimum,
average, sum, and maximum - and explain their usage in
real world applications.

We further present why we need secure aggregation -
compromised sensor nodes can manipulate the result of
aggregated values without limit, causing false information
to be delivered to the base station. We then present the
details involved in using a lightweight block cipher to
provide an aggregation service which can provide
confidentiality, integrity, and authenticity [22]. Our
module skips the complex mathematical analysis and
focuses on high-level ideas.

5. The Programming Project

A practical project is indispensible in order to enhance
students’ knowledge with hands-on experience.
Therefore, we developed a project aiming at familiarizing
students with hands-on programming of TinyOS. In the

project, students need to develop a multihop data
collection tree protocol. The protocol starts with the base
station locally broadcasting a tree construction message,
which includes its own ID and its depth as 0. The detailed
information about how to set up the tree is as follows.

Initially, no node belongs to the data collection tree.
When a node, say A, receives a tree construction message
from node B the first time (i.e., node A has not joined the
data collection tree yet), node A assigns its depth to be the
depth of node B plus one, and sets its own parent to be
node B. After this, node A rebroadcasts the tree
construction message, with its own ID and depth. If node
A has already joined the data collection tree when it
receives a tree construction message from node B, node A
just simply disregards that message. Figure 1 shows an
example data collection tree after it is set up.

DB
E

HA

F

G

I

Base Station

J

C

Depth = 0

Depth = 1

Depth = 2
Depth = 2

Depth = 3 Depth = 3

Depth = 3

Depth = 3

Depth = 3
Depth = 3

Depth = 3

Figure 1. An Example Data Collection Tree

After the tree is set up, each node will start sensing and
transmitting its ambient light intensity to the base station
every one second. As simple as it is, this project can help
students make sense of how sensor nodes work together
to form a network and how data are passed from a node to
the base station.

In practice, it is difficult to set up multihop
communications. This is because each node has a
relatively large transmission range by default. Therefore,
all nodes deployed in a classroom setting are physically
connected to each other. Because of this reason, single-
hop communications are often formed in WSN course
projects. To enable multihop communications in the
project, the setRFPower() function provided by TinyOS
can be used to change the transmission range of a mote.

6. Student Evaluations

The developed course modules were used in teaching a
Computer Science course in Wireless Sensor Networks at
the Department of Computer Science at Lamar University
in summer 2008 and 2009. Near the end of the semester,
we conducted preliminary student surveys that evaluated

the course modules and the project. There were 10
graduate students and one undergraduate student enrolled
in that course. Of those 16 students, only two students
were female, one from India and one from China. Of the
14 male students, four were domestic (American) students
while the other two were international graduate students
from India or Nepal. The ages of all the students were
between 22 and 25. All of the students majored in
Computer Science. Because the class size was small and
there existed no control group, the student evaluation was
mainly based on a simple class survey and therefore we
did not find it necessary to apply statistical packages like
SPSS [20] to data analysis. Instead, only the mean and the
standard deviation of the student evaluation scores were

computed as a preliminary measure of the effectiveness of
the course modules and the project. Moreover, because
there was only one female student and the students’ ages
were very close, the respective impact of age and gender
was not analyzed in our evaluation.

Our evaluation questions had three categories: general
questions, questions about course modules, and questions
about the project. In Table 1, we present the evaluation
results based on feedback from those 11 students who
took the course. The score is on the scale of 1 to 5, with 5
being Strongly Agree. As we can see from Table 1, the
feedback from students was very positive.

Table 1. Student Evaluation

Categories Evaluation Questions
Average

Score
Standard
Deviation

• General
Questions

1) I have learned a great deal from this class. 4.72 0.467
2) Students have the opportunities to be exposed to practical aspects of wireless

sensor networks.
5 0

• Questions
about the
Project

3) The project is necessary in this class. 5 0
4) The project in this class is challenging. 4.72 0.467
5) The project in this class is very interesting. 4.9 0.301
6) The project in this class requires a lot of skills to finish. 4.5 0.505
7) The project in this class is time-consuming. 4.5 0.505
8) The project is a valuable part of this class. 4.72 0.467
9) The project used in this class helps me improve my ability of problem solving. 4.8 0.405
10) The project used in this class helps me improve my ability of creative thinking. 4.73 0.467
11) The project used in this class helps me improve my ability of independent

thinking.
5 0

• Questions
about the
Course
Modules

12) The course materials covered in this class are difficult. 4.36 0.501
13) It is time-consuming to understand the course materials. 3.72 0.905
14) The course materials used in this class help me improve my ability of problem

solving.
4.81 0.405

15) The course materials used in this class help me improve my ability of creative
thinking.

4.81 0.405

16) The course materials used in this class help me improve my ability of
independent thinking.

4.54 0.505

17) The time spent in this class is worthwhile. 5 0

We also had some short essay evaluation questions which
aimed at investigating advantages and disadvantages of
this class. Based on students’ answers, advantages of this
course are as follow:

• Working with hands-on hardware and software is

interesting.
• Students like the practical applications introduced in

the class.
• The class is very practical.

Disadvantages mentioned in students’ answers are as
follow. We notice that the main disadvantages provided
by students reflect the fact that it is challenging for
students to master the fundamental principles of WSNs.
• nesC language is difficult to learn.
• Some ideas, especially the hardware aspects of sensor

nodes, are complex to understand.

We noticed that students taking this class had big
differences in their education background. Based on our
interaction with students, we found that those students
with insufficient academic preparation in Computer
Science thought that the selected papers and projects were
difficult and time-consuming for them to understand. It
usually took those students much more time to read
relevant materials before they could start working on the
project. On the other hand, some students were already
taking thesis options in the area of wireless sensor
networks, and already had some preliminary background
in WSNs before they took this course. Those students
thought that the project was easy to complete.

7. Implications to Theory and Practice

Pedagogical research has shown that experimental
learning and practices are critically important to the

success of Computer Science courses. On the one hand, if
only the theories are taught without practice, the course
will become a daunting task for most students and may
directly conflict with most students’ learning styles. On
the other hand, if only the practice is provided without the
underlying theories, the course will lack its theoretical
depths, and few students would appreciate the utility of
theoretical materials. Denning indicated that a portrait of
computing organized around great principles and
practices promote greater understanding of the science
and engineering behind information technology [7]. One
cannot fully understand a principle or theory without
observing it from practice.

A WSN course provides a typical example to integrate
scientific principles and technological applications.
Therefore, we need to carefully meld WSN theories and
practice in order to give students concrete examples about
how WSNs work in order to increase students’ abilities to
absorb the lectured protocols and algorithms. The course
modules presented in this paper provide a preliminary
illustration of balanced courseware development that
offers the instructor and the students an opportunity to
experience the interplay between theory and practice.

8. Conclusions and Future Work

In this paper, we present a module-based courseware that
we have developed to teach WSNs and their security
issues from a practical point of view. Aiming at
experimental learning which enable effective student
learning, we have carefully designed nine course modules
by using materials published in representative conference
papers and journal articles in the area of WSNs. The
selected topics focus on practical aspects of sensor
networks. Representative hardware modules from
CrossBow are used to illustrate important concepts.

Our designed modules avoid complex theories and focus
on the introduction of basic principles in WSNs.
Specifically, we present nine course modules:
Introduction to Wireless Sensor Networks, TinyOS,
Energy Management, Radio and Medium Access Control,
Wireless Link Estimation, Data Collection and
Dissemination, Security of Wireless Sensor Networks,
Localization and Secure Localization, and Aggregation
and Secure Aggregation. These course modules cover
fundamental topics in the area of wireless sensor
networks. Distinct from existing WSN textbooks, the
protocols presented in our course modules are
accompanied by example open source TinyOS
implementations. Therefore, students have the
opportunities to see a detailed implementation after they
learn the concepts from lectures. Based on our teaching
experiences, this style of lecturing can significantly
facilitate students’ understanding of lectured subjects and
help them accumulate hands-on experience in building a
wireless sensor network.

Integrated in the design of wireless sensor networks are
basic principles from traditional Computer Science
subjects such as operating systems and computer
networks. The WSN course modules that we have
developed, therefore, may also be adopted in teaching
traditional Computer Science subjects. Studying the open
source TinyOS example programs included in the WSN
modules not only help students to understand how WSNs
operate, but also further enhance their understanding of
fundamental concepts in operating systems and computer
networks.

We introduce XubunTOS, which uses a live Linux CD to
greatly simplify the installation of TinyOS and to ease the
development environment setup for WSNs. We then
present a practical project for students to develop a
multihop data collection tree protocol. This project can
facilitate students’ understanding of both sensor hardware
and WSN software at various layers of the network
protocol stacks. Our project description provides a step-
by-step tutorial for students to follow. We have put all the
course modules and project in the class website:
http://galaxy.cs.lamar.edu/˜bsun/wsn/wsn.html. When
these course modules are adopted by instructors in other
universities, we recommend that those instructors check
relevant websites and make corresponding revisions
because of constant progress of WSN research.

The development of these modules greatly facilitates
students’ interests in WSN research. Four students took a
master thesis option after they completed this course. This
activity can further foster both graduate and
undergraduate research environment, encourage student
collaboration, and enhance their confidence for future
career.

Concerning future extension of this project, first, we plan
to further revise the course materials and, if necessary,
add more contents. We would also like to make our
course modules more practical and comprehensive in the
future. This requires us to keep track of the latest research
development in wireless sensor networks and continue to
integrate relevant topics into the course modules. Further
revisions of some interrelated topics, for example, energy-
conserving driver design for WSNs, WSN network
protocol debugging, WSN data analysis, etc., are
inherently complex and depend on more research work
from the WSN community. We will add relevant modules
when the WSN research community has reached an
agreement on certain topics.

Second, we plan to make the assignments and projects
more practical and cover more topics. The project
presented in this paper only focuses on the network layer
of WSNs. We plan to design a practical project for each
module to facilitate students’ understanding.
Third, we will perform formal evaluation of the course
modules when larger data sets are available. We plan to

use the developed modules in future offering of this
course to collect more data. We will also obtain students
evaluation data from other instructors who are willing to
use our proposed modules. When we have enough data,
we will apply relevant statistical packages like SPSS [20]
to perform formal analysis of the collected data.

Acknowledgements

This work was supported in part by grants from US NSF
(DUE-0633445 and DUE-0633469) and the Institute of
Space Systems Operations (ISSO).

References

[1] ABET, http://www.abet.org.
[2] ACM SENSYS, from http://sensys.acm.org/.
[3] CC2420 Datasheet,

http://focus.ti.com/docs/prod/folders/print/cc2420.html.
[4] CC1000 Datasheet,

http://focus.ti.com/docs/prod/folders/print/cc1000.html.
[5] Collection Tree Protocol,

http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.
[6] Couto, D. D., Aguayo, D., Bicket, J., and Morris, R.,

A High-Throughput Path Metric for Multihop Wireless
Routing, Proc. of the ACM MobiCom, Sept. 2003, San
Diego, CA, 134-146.

[7] Denning, P., Great Principles in Computing Curricula,
Proc. of the 35th SIGCSE, March 2004, Norfolk, VA,
336-341.

[8] Fonseca, R., Gnawali, O., Jamieson, K., and Levis, P.,
Four Bit Wireless Link Estimation, Proc. of the
HotNets VI, Nov. 2007, Atlanta, GA.

[9] Gay, D., Levis, P., and Culler, D., Software Design
Patterns for TinyOS, ACM Transactions on Embedded
Computing Systems, 6(4), 40-49.

[10] Karlof, C., Sastry, N., and Wagner, D., TinySec: a
Link Layer Security Architecture for Wireless Sensor
Networks, Proc. of ACM SenSys, Nov. 2004, Baltimore,
MD, 162-175.

[11] Krishnamachari, B., Estrin, D., and Wicker, S., The
Impact of Data Aggregation in Wireless Sensor
Networks, Proc. of 22nd International Conference on
Distributed Computing Systems Workshops, Toronto,
Canada, July 2007, 575-578.

[12] Levis, P., T2: A Second Generation OS For
Embedded Sensor Networks, Technical Report TKN-
05-007, Telecommunication Networks Group,
Technische Universitat Berlin.

[13] Levis, P., Patel, N., Culler, D., and Shenker, S.,
Trickle: a Self-Regulating Algorithm for code
Propagation and Maintenance in Wireless Sensor
Networks, Proc. of the USENIX NSDI, March 2004,
San Francisco, CA, 15-28.

[14] Liu, D., and Ning, P., Security for Wireless Sensor
Networks (New York, NY: Springer, 2006).

[15] Liu, D., Ning, P., and Du, W., Attack-Resistant
Location Estimation in Sensor Networks, Proc. of the
Fourth IPSN, April 2005, Los Angeles, CA, 99-106.

[16] Madden, S., Franklin, M., Hellerstein, J., and Hong,
W., TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks, ACM SIGOPS Operating Systems
Review, Vol. 36, Is: SI, 131-146.

[17] Perrig, A., Stankovic, J., and Wagner, D., Security in
Wireless Sensor Networks, Communications of the
ACM, 47(6), 53-57.

[18] Polastre, J., Hill, J., and Culler, D., Versatile Low
Power Media Access for Wireless Sensor Networks,
Proc. of ACM SenSys, Baltimore, MD, Nov. 2004, 95-
107.

[19] Raghavendra, C. S., Sivalingam, K. M., and Znati,
T., Wireless Sensor Networks (New York, NY:
Springer, 2006).

[20] SPSS, http://www.spss.com.
[21] Stoleru, R., He, T., and Stankovic, J. A., Range-Free

Localization, in Secure Localization and Time
Synchronization for Wireless Sensor and Ad Hoc
Networks, Advances in Information Security Series,
Vol. 30 (New York, NY: Springer, 2006).

[22] Sun, B., Li, C. C., Wu, K., and Xiao, Y., A
Lightweight Secure Protocol for Wireless Sensor
Networks, Elsevier Computer Communications Journal
Special Issue on Wireless Sensor Networks:
Performance, Reliability, Security, and Beyond, 2006,
2556-2568.

[23] TinyOS, http://www.tinyos.net.
[24] TinyOS Documentation,

http://www.tinyos.net/tinyos-2.x/doc/
[25] TinyOS Tutorial,

http://docs.tinyos.net/index.php/TinyOS_Tutorials.
[26] TinyOS V2,

http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x/.
[27] Tran, S. P. M. and Yang, T. A., Evaluations of

Target Tracking in Wireless Sensor Networks, Proc. of
the 37th SIGCSE technical symposium on Computer
science education, 2006, 97-101.

[28] USENIX NSDI,
http://www.usenix.org/event/byname/nsdi.html.

[29] USENIX OSDI,
http://www.usenix.org/event/bytopic/osdi.html.

[30] Xubuntu, http://www.xubuntu.org.
[31] CrossBow, http://www.xbow.com.
[32] Zhao, F., and Guibas, L., Wireless Sensor Networks:

An Information Processing Approach, The Morgan
Kaufmann Series in Networking (San Francisco, CA:
Morgan Kaufmann, 2004).

[33] Zhou, G., He T., Krishnamurthy, S., and Stankovic,
J. A., Models and Solutions for Radio Irregularity in
Wireless Sensor Networks, ACM Transactions on
Sensor Networks, 2(2), 221-262.

http://www.abet.org/�

http://sensys.acm.org/�

http://focus.ti.com/docs/prod/folders/print/cc2420.html�

http://focus.ti.com/docs/prod/folders/print/cc1000.html�

http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html�

http://www.spss.com/�

http://www.tinyos.net/�

http://www.tinyos.net/tinyos-2.x/doc/�

http://docs.tinyos.net/index.php/TinyOS_Tutorials�

http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x/�

http://www.usenix.org/event/byname/nsdi.html�

http://www.usenix.org/event/bytopic/osdi.html�

http://www.xubuntu.org/�

http://www.xbow.com/�

		ABSTRACT

		KEY WORDS

WEB 2.0 AS AN ENABLER OF DEVELOPING OPEN CONTENT ONLINE
HYPERTEXTBOOKS

T. Andrew Yang, Vishal S. Jadhav, Darshan Chipade Bo Sun
Division of Computing and Mathematics Department of Computer Science

University of Houston – Clear Lake Lamar University
Houston, TX 77058 U.S.A. Beaumont, TX 77713 U.S.A.

yang@uhcl.edu bsun@my.lamar.edu

ABSTRACT
A Hypertextbook is an online version of the traditional
textbooks. Different from a hardcopy textbook or an e-book,
a Hypertextbook in a way is similar to a Web-based system,
which provides attractive features such as dynamic
interactions, multimedia presentations, animations of
important concepts and procedures, and pervasive
availability wherever Internet is accessible. Hypertextbooks
may be adopted in traditional classroom teaching, but
distance education and Web-based education in particular
can greatly benefit from the dynamic and user friendly
features provided by Hypertextbooks. In this paper, we
report our experience of developing Open Hypertextbooks,
which combine the merits of Hypertextbooks and features
provided by Web 2.0 technology, especially the
collaborative authoring process and the collective
intelligence resulting from that process. The result is an
open content online textbook with not only rich features
typically available in a conventional textbook but also
flexibility allowing user contribution by adding and/or
changing the content of the book. In addition to presenting
our design of an Open Hypertextbook that we developed for
the subject Wireless Sensor Networks, in this paper we also
survey related work and examine issues that one may
encounter when developing a good quality Open
Hypertextbook.

KEY WORDS
Open Hypertextbooks, Web 2.0, Collaborative Authoring

1. Introduction

It is typically a difficult task to publish a conventional
textbook, whether as a hardcopy book or an e-book, while
trying to satisfy all types of users’ needs. There exist a huge
span between different users in terms of their interest,
motivation, experience, and level of knowledge.

With the pervasive presence of the Internet in today’s
society, online publishing has become increasingly popular
in various sectors, including the publishing and printing
industry. With the growth of the Internet and its myriad of
powerful features, some publishers have tried to resolve the

aforementioned issue by publishing online textbooks as
Web-based information systems, thereby benefiting from
the multimedia and interactive nature of Web-based
systems. Furthermore, an online textbook allows the
publisher to make frequent updates when necessary, and has
the flexibility of offering tailored contents for users of
different background and capabilities.

One example of online textbooks is the Hypertextbook. It is
an online version of a textbook which supports features such
as high definition images, slide shows, multiple sound
tracks and video clips [1]. It also provides information in a
non-linear manner and has user-adjusted level of content,
which helps different users to access information in a
manner suitable for their respective levels [1] [2]. The
development of Hypertextbooks, however, is typically a
closed process, not allowing any user contribution, and
therefore does not benefit from the great features provided
by Web 2.0 technology [3].

An example of online books that support open content and
other Web 2.0 features is the Wikibook, which is built upon
the Wikipedia platform, a phenomenal Web 2.0 application.
The content of a Wikibook are contributed by volunteers, in
a way similar to how Wikipedia pages are collaboratively
edited by contributors. Although Wikibooks started as an
open-content textbooks project, a close look at the existing
examples of Wikibooks reveals that most, if not all, of the
Wikibooks are not really textbooks in the conventional
sense, lacking important features such as chapter-end
exercises, quizzes, labs, etc. Neither do they provide
features available in Hypertextbooks, such as user-adjusted
level of content and real-time dictionaries.

In this paper, we propose the development of Open
Hypertextbook - a comprehensive Web-based
Hypertextbook which offers the flexibility of user
contributed knowledge and Web 2.0 services. Open
Hypertextbooks and Wikibooks share many features. For
example, both are Web based, support multimedia contents,
and allow user-contributed knowledge. The Open
Hypertextbook, however, provides features desirable in a
conventional textbook, such as chapter-end exercises,
quizzes, labs, real-time dictionary, and tailored user levels,

mailto:yang@uhcl.edu�

mailto:bsun@my.lamar.edu�

which are not features present in Wikibooks. Our focus in
this paper is twofold. First, we provide brief surveys of
concepts related to Open Hypertextbooks, including
Hypertextbooks, Wikipedia, and Wikibooks (section 2). The
issues one may encounter in developing an open content
Hypertextbook are examined in section 3. By combining the
features of Hypertextbooks and Wikipedia, we present the
design of a sample Open Hypertextbook for Wireless Sensor
Networks (section 4). Section 5 concludes the paper with
further discussions.

2. Related Work

In this section, we give brief surveys of projects that are
related to the development of Open Hypertextbooks. Figure
1 illustrates that Open Hypertextbooks derive features from
both Wikipedia and Hypertextbooks.

Figure 1. Relationships between Open Hypertextbook and

Related Concepts

2.1. WIKIPEDIA (as an example of Web 2.0
applications)

Among the many popular Web 2.0 applications (for
example, MySpace, Facebook, YouTube, Flickr, etc.),
Wikipedia stands out with its support for collaborative
editing, which allows all users to participate in creating and
editing articles in the online encyclopedia. The result is the
world’s largest and most popular general reference work on
the Internet1. The Wikipedia phenomenon demonstrates how
collective intelligence may be generated in large scale with
support provided by Web 2.0 technology, which solicits
world-wide user contributions.

As summarized by O’Reilly [4], a Web 2.0 application
exhibits some (if not all) of the following characteristics:

• In Web 2.0 applications, it is the services (and not the

packaged software) that are generating the revenue for
the organizations.

• A Web 2.0 application tends to control over unique,
hard-to-recreate data sources that get richer as more
people use them. Users become stuck to the application

when more unique data are available in the application.
• Web 2.0 applications trust users as co-developers. First

of all, the feedback from the users helps the developer
and/or the organization to make the product better; in
many cases, the users are actively involved in the
development process. The result is the collective
intelligence (see below).

• The collaborative services provided by the Web 2.0 site
facilitate and enable user contributions. Therefore, a
Web 2.0 application tends to harness collective
intelligence.

• Another unique principle of Web 2.0 applications is
that they tend to leverage the long tail through
customer self-service; by making their Web sites and
online services user friendly and easy to use, they reap
the benefit of more customers using their services (for
example, Google search engine) and the advertisement
revenue that follows.

• Web 2.0 applications tend to be supported by software
above the level of a single device. That is, the software
work on different devices and different client platforms
while delivering the same quality and performance.

• Web 2.0 applications tend to adopt lightweight user
interfaces, development models, and business models.
A lightweight entity is simple and elegant. A
lightweight user interface, for example, does not consist
of heavy graphics. A lightweight model tends to
employ multiple, simultaneous processes to achieve a
common goal.

Wikipedia is essentially a free multilingual online
encyclopedia1. The most unique feature of Wikipedia is that
it allows anyone on the Internet to change and update the
content, following Wikipedia’s collective editing policy to
reach consensus. This feature can be both useful as well as
harmful for the cause of Wikipedia. With this feature, the
content on Wikipedia pages is derived and updated by
various users and this can be really useful in improving the
content of the article. Since it allows anyone to edit the
content, there are various issues such as plagiarism, wrong
or ambiguous information, and inaccurate or incomplete
information, all of which need to be properly addressed in
order to assure the quality of the pages. To serve this
purpose, volunteers (working as moderators and authors) are
in charge of specific topics and sections within a topic;
those volunteers constantly keep track of the authenticity
and correctness of information added to the pages [5].
However, Wikipedia, being an encyclopedia, only imparts
general information and does not thoroughly cover a
specific topic as is typically done in a textbook.

2.2. HYPERTEXTBOOKS
A Hypertextbook is a computer-based and comprehensive
online resource, which promotes active learning [1] [2]. A
Hypertextbook contains multimedia features such as high

definition images, video clips, slides, etc., which make it
more interesting and attractive to the readers. A
Hypertextbook may adopt Java programs (applets), which
are embedded seamlessly in the Hypertextbook and provide
dynamic user interface such as animation [1]. Another
important feature of Hypertextbooks is real-time dictionary.
When a user clicks on a word, relevant information or
definition of that word is displayed [2]. These dynamic and
interactive features of Hypertextbooks are typically not
present in conventional textbooks. In addition, a
Hypertextbook contains various other features typically
present in a conventional textbook, including self-test
quizzes with feedback, chapter-end exercises, labs, etc.
Figure 2 illustrates those features in a sample Hypertextbook
for the subject Biofilms.

Figure 2. A snapshot of the biofilm hypertextbook, with
chapter-end lab exercises and other features [1]

Hypertextbooks provide information in a non-linear manner
in which the user can decide what to visit next and access
related information using the linked documents. As shown
in Figure 3, it provides with an option for different user
levels, by providing tracks for novice, intermediate, and
advanced users through the sections. It tailors the content
depending on the level selected by the user. Based on
studies by Cunningham and Ross [2], students have good
learning experiences using Hypertextbooks, and they
perform better in learning the subject.

For authors who want to develop a Hypertextbook, an
authoring environment is provided; however, as reported in
[2], instructors who are not technically savvy may find it
initially difficult to master that environment. In addition, the
authors, as those writing a conventional textbook, need to
put in extra efforts and time in search of good visualizations,
images and content materials related to the respective
subject [2]. Moreover, the authoring process of a
Hypertextbook is a closed process, not allowing user
contributions.

Figure 3. User levels in the biofilm hypertextbook [1]

2.3. WIKIBOOKS
Developed as a sister project to Wikipedia, Wikibooks has
grown rapidly since its creation in July 10, 20032. As of
June 25, 2009, there exist over 38,000 pages and over
245,500 users registered with Wikibooks website3. In
addition there exist about 900 active users (users who
performed an action in the last 30 days) 3.

At the core, a Wikibook is an open-content online book that
allows user contribution4. Volunteers who contribute to the
writing of Wikibooks are called Wikibookians. Wikibooks
modules passed the 10,000 modules milestone after only
two years of operation2. The content of a Wikibook is
constantly improving as long as it continues to attract more
Wikibookians to help update the content by augmenting their
inputs to the content. Similar to Wikipedia, some volunteers
(as authors) are in charge of creating a Wikibook, while
others (as co-authors) are in charge of checking the
accuracy of updated information [6]. In addition, Wikibooks
also have a version control feature which allows keeping
track of versions of the changes. Figure 4 illustrates a
sample Wikibook for Ecology.

Wikibooks provide various multimedia. These multimedia
features along with the user involvement allow Wikibooks to
be an interesting and innovative learning resource.

Although Wikibooks started as the “open-content textbooks”
project2, the existing Wikibooks lack important features
typically available in a conventional textbook. If a Wikibook
is to be used in a classroom setting, features such as labs,
assignments and quizzes must be provided to help the
students understand the subject matter. Without these
fundamental features, a Wikibook can hardly be called an
online textbook.

Figure 4. An example Wikibook for ecology (from
http://en.wikibooks.org/wiki/Ecology/Biosphere_Organization)

2.4. Comparison of Wikibooks, Hypertextbooks, and
Open Hypertextbooks

As discussed earlier, we can infer that Wikibooks and Open
Hypertextbooks serve the same purpose, in the sense that
both try to render online books. They share most of the
features in common including high definition images, video
clips, user contribution, etc.

Table1. Comparison of Open Hypertextbooks with
Wikibooks and hypertextbooks

Features
Open

Hypertextbooks Wikibooks Hypertextbooks
Main use Classes General public Classes
High definition
images

Yes Yes Yes

Video clips Yes Yes Yes
User
contributed
content

Yes Yes No

Levels of users Yes No Yes
Teaching notes Yes No Yes
Chapter-end
exercises

Yes No Yes

Self-test
Quizzes

Yes No Yes

Labs (Projects) Yes No Yes
Supplements for
Teachers

Yes No Yes

Real- time
dictionary

Yes No Yes

As shown in Table 1, Open Hypertextbooks have various
additional features which make it more effective and
versatile than Wikibooks. For example, Open
Hypertextbooks have user adjusted content, in which each

section is divided in three tracks: novice, intermediate and
advanced users, respectively. Therefore, it may adapt to the
different levels of users and help learning the topic more
effectively. Wikibooks do not support any similar features to
adapt to the level of users. Another set of distinct features of
Open Hypertextbooks include chapter-end exercises
combined with quizzes and labs, which are typically
available in a conventional textbook for students and
instructors to use. These features, absent in Wikibooks, are
important in helping students to understand the topic.

3. Challenges of developing Open

Hypertextbooks

Both Hypertextbooks and Wikipedia have certain advantages
and disadvantages. The Hypertextbook is based on HTML
and have built-in features such as cascading style sheets, a
common file structure, video clips and a set of JavaScript
functions. On the other hand Wikipedia is built on
MediaWiki, which is Web-based wiki software written in
PHP. There are two major challenges to overcome while
combining open nature of Wikipedia with Hypertextbooks.

3.1. How do we retain the rich media types currently
in Hypertextbooks when moving to the
MediaWiki platform?

The Hypertextbook supports various multimedia features,
which make it more effective and interesting to the users
than a traditional textbook. It supports various formats of
images, animations, audio, and video content. In addition, it
supports adjustable user levels and a real-time dictionary. It
is essential that all these multimedia and user interaction
features are retained in the Open Hypertextbook.

By default MediaWiki supports gif, jpg, jpeg and png image
formats5. Therefore it supports most of the standard image
formats. It also supports embedding of most of the standard
audio formats, such as mp3 and ogg6. In addition, it supports
various video formats, including flash, QuickTime, etc.
Embedding of videos from popular sites such as YouTube,
Google video and other sites is also supported7.

Another important feature in Hypertextbooks is user levels,
which adjusts the content according to the type of the users
(novice, intermediate, or advanced). This feature can be
incorporated with the MediaWiki platform as it supports
JavaScript and HTML, which can be used to support this
feature8. The real-time dictionary feature may also be
supported in the same manner in Open Hypertextbooks.

Along with the support of these multimedia features,
MediaWiki also provides various other useful features. It
supports user contribution and hence increases user-
involvement. It also has discussion and history pages for

http://en.wikibooks.org/wiki/Ecology/Biosphere_Organization�

each article, allowing users to know more about the recent
changes and updates on the article. It provides registered
users with extra features such as keeping track of a certain
page of interest to the user.

Based on our investigation, we conclude that MediaWiki is
able to provide a development platform that allows the
developers of online textbooks to retain the rich types of
content of Hypertextbooks; furthermore, MediaWiki
provides additional useful features to improve the learning
process for the users.

3.2. How do we maintain the quality of the content
required of an online textbook when moving to
the open content environment of MediaWiki?

As the user will be allowed to make changes to the content
of an Open Hypertextbook, it is necessary that the quality of
the content is maintained. For that, a good mechanism must
exist to ensure the quality of the content. In most wiki-based
systems (e.g., the Wikipedia), the quality of content is
maintained by two primary mechanisms: the collaborative
editing process and the peer review process.

The collaborative editing process involves administrators
and other volunteers who actively take part in the
improvement and maintenance of the article. It involves
various users, who take up responsibilities of updating the
content and/or ensuring the correctness of the pages. These
changes are discussed by the community in the discussion
page with the focus mainly being on whether the changes do
improve the content, are they objectionable and whether
they comply with all the guidelines. There has to be a
consensus reached among the community on this topic and
may require some compromise at times to reach a consensus
of majority and for changes to be accepted.

This collaborative editing process, however, does not assure
that quality of content will be preserved all the time. It is
quite possible that, in collaborative editing, there may be
unwanted or even harmful changes made and they may
remain for some time before being noticed and reverted.

Peer reviews in Wikipedia are performed by people who
contribute or edit the content (also known as Wikipedians).
To improve the quality of an article (e.g., from a start level
to a more improved standard), the article can be nominated
for peer review. In Wikipedia a quality scale has been
developed to assess the article based on certain criteria and
to categorize it in its respective standard9. On this scale,
starting with the most improved to the least effective, values
such as FA, A, GA, B, Start, Stub and List may be assigned
to an article9. FA (i.e., Featured article) designates the
highest standards in terms of its content, while a stub or list
represents the lowest value and the article usually has only a
few sentences regarding the subject. The assessment of an
article’s quality is also performed by Wikipedians, who

follow the guidelines laid down by the Wikipedia
community10, 11.

Open Hypertextbooks will follow similar quality control
mechanisms as in Wikipedia, i.e., collaborative editing and
quality scale. In addition, one or several of the following
measures may be implemented to further ensure the quality
of Open Hypertextbooks:

(a) One of the alternatives of securing the editing
process is to increase the granularity of security for the
various parts of an article. Pages may be protected and only
portion of the pages may be changed to ensure that the
structure and the core content of the article are preserved.
To achieve this, finer access control features is needed.

(b) Another option is to assign some responsibilities
(e.g., maintenance of a certain article) to certain person(s),
instead of all the work being voluntary. Similar to option a,
finer access control of the pages is needed to support this
option.

(c) A third option is to add expert peer reviews to help
produce high quality articles. As discussed above, peer
reviews in Wikipedia are typically not performed by experts
in that subject as peer reviews of research articles are typical
carried out12. Inviting well known experts of a given subject
to review the article will definitely help to further improve
its quality.

4. An Open Hypertextbook for Teaching

Wireless Sensor Networks

As illustrated in Figure 5, features of the Open
Hypertextbook for Wireless Sensor Networks are derived
from Wikipedia and Hypertextbooks.

Figure 5. Open Hypertextbook: WSN: Chapters

It inherits many features from both projects. For example,
some of the Hypertextbook features like high definition
images, video clips, self-test quizzes, chapter-end exercises
etc., are also available in Open Hypertextbooks. In addition,

it inherits the open and user contributed nature of
Wikipedia. An Open Hypertextbook, with these combined
features, increases the user involvement by allowing users to
contribute to the content of the book.

As an experimental development of Open Hypertextbooks,
we have developed the prototype of an Open Hypertextbook
for the subject Wireless Sensor Networks. As shown in
Figure 5, the Open Hypertextbook consists of three primary
tabs (Chapters, Labs, and Assignments), plus several
additional tabs. The home tab gives a brief description of the
various chapters in the book. The About us tab provides
information about the authors of the Open Hypertextbook.

Each chapter under the Chapters tab gives a brief
description of the particular topic covered in that chapter.
The user is provided with an index of topics related to that
particular chapter. The index feature is built into
MediaWiki, making it easy for the user to navigate through
the different chapters.

Also illustrated in Figure 5 is the assignments tab. Each
chapter has its related set of assignments and can be viewed
with the tab provided underneath the list of chapters. Figure
6 illustrates an example assignment for the Wireless Sensor
Network Open Hypertextbook.

Figure 6. Open Hypertextbook: WSN: Assignments

Figure 7. Open Hypertextbook: WSN: Labs

The labs tab provides an in-depth description of lab
experiments, which serve as tutorials of related concepts and
skills. It consists of screen shots and various images related
to the lab exercises, making it easier for the user to
understand the particular lab. The lab typically contains
step-by-step software installation instructions, issues with
the installation, and references to related information.
Completing the labs enables the user to be acquainted with
installation of the required software and basic terms of
Wireless Sensor Networks. Figure 7 illustrates an example
lab, lab 1: Introduction to Cygwin.

The Open Hypertextbook of Wireless Sensor Networks
currently consists of four chapters and four labs. Each
chapter consists of a corresponding set of assignments and
exercises. We are currently working on the user levels
option, aiming at providing different tracks (novice,
intermediate and advanced) of the sections for users with
different background of the subject.

5. Discussion and Future Work

In this paper we briefly survey Wikipedia, Wikibooks and
Hypertextbooks, which all aim at providing online resources
for learning. We propose combining the open nature of
Wikipedia with features of Hypertextbooks to create Open
Hypertextbooks, which provide a free and improved
learning resource for educational purposes. Issues related to
the development of Open Hypertextbooks are examined.
Features implemented in a sample Open Hypertextbook (for
the subject of Wireless Sensor Networks) are discussed.

The anticipated educational impact of Open Hypertextbooks
on technology-based education and professional training
include the following:

(a) User community: The collaborative authoring
process of creating and updating an Open Hypertextbook
will facilitate the forming of a user/author community with
shared interest in a particular subject area (e.g., Wireless
Sensor Networks). In addition to subject experts, the
community will also be composed of instructors teaching
relevant subjects and students taking classes in those subject
areas.

(b) Constant updating: A well designed Open
Hypertextbook will provide attractive features that are not
available in a hardcopy or electronic textbook. In addition to
interactive features typically provided by Web-based
information systems, an Open Hypertextbook supports
dynamic participation of all parties (authors and users alike),
which results in collective intelligence formed out of user
contributions. Instead of waiting for the author to correct an
error in the next revision (as in the traditional textbooks), an
Open Hypertextbook can be constantly revised, therefore
promptly removing errors detected by the users and
incorporating up-to-date information into the online

textbook.
(c) Involved and happy instructors: A common

dilemma facing most Computer Science and some
Engineering instructors is the frequent need to change the
textbooks. This is mainly the result of the still evolving
nature of the subject areas. The subject Wireless Sensor
Networks, for example, is still an evolving research area,
with many new algorithms and tools constantly added. A
typical Computer Science textbook, especially in advanced
research areas, is likely to become out-dated in less than
three years. When the instructor decides to change the
textbook in a course, it is likely necessary for the instructor
to update most of the teaching materials, including lecture
notes/slides, assignments, and projects. Because of the
constantly updating feature of an Open Hypertextbook, the
instructor who adopts an Open Hypertextbook in his/her
course does not need to deal with the dilemma of whether to
change the textbook or not every two or three years.

(d) Cheaper or free textbooks: A common complaint
of today’s college students, especially those in Computer
Science, Engineering and Business areas, is the high price of
textbooks. A typical Computer Science textbook, for
example, can easily go above $100, and some instructors
assigned two or more textbooks because they are not able to
find a single textbook suitable for their courses. With its
open content and user contribution features, an Open
Hypertextbook represents the collective intelligence of all
who have contributed, implying that the Open
Hypertextbook will be offered free to all or, if a fee is
charged, for a very small cost.

(e) Motivated students: A user of an Open
Hypertextbook is encouraged to develop him/herself from
being a novice in the subject area to eventually becoming an
expert contributor to that Open Hypertextbook. Although it
is not practical to expect all students to evolve this way, it is
feasible that a great number of students will be motivated to
contribute to the content of the Open Hypertextbook that is
adopted by his instructor as the textbook for the class.

As part of our future work, we plan to empirically verify the
anticipated impact described above. In addition, we will
continue to implement advanced features of the Open
Hypertextbook for Wireless Sensor Networks, such as user
levels, real-time dictionaries, and innovative content review
process. Besides, in order to ensure long-term sustainability
of Open Hypertextbooks, feasible business models for open
content online resources need to be examined and adopted.
Although online advertisement is the most common form of
supporting free online resources [3], currently Wikipedia is
solely funded by donation. With Open Hypertextbooks, in
addition to the donation model, other business models may
be feasible. For example, when a typical Computer Science
textbook can easily cost $100 or more, would users be
willing to pay a small fee ($15-$30 dollars) in order to use
the content of the Open Hypertextbook? What would be the
potential impact of a fee-based model on the open content

nature of Open Hypertextbooks? Issues such as those need
to be further studied.

Acknowledgment

This work was supported in part by grants from US NSF
(DUE-0633445 and DUE-0633469) and the Institute of
Space Systems Operations (ISSO).

End Notes
1 HTTP://EN.WIKIPEDIA.ORG/WIKI/WIKIPEDIA
2
http://en.Wikibooks.org/wiki/Wikibooks:History_of_Wikiboo
ks
3 http://en.Wikibooks.org/wiki/Special:Statistics
4 http://en.Wikibooks.org/wiki/Main_Page
5
http://meta.wikimedia.org/wiki/Help:Images_and_other_upl
oaded_files
6
http://www.mediawiki.org/wiki/Category:Audio_player_ext
ensions
7
http://www.mediawiki.org/wiki/Category:Video_player_ext
ensions
8 http://www.mediawiki.org/wiki/Extension:Javascript
9

http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Boo
ks/Assessment#Quality_scale

10 http://en.wikipedia.org/wiki/Wikipedia:Featured_articles
11

http://en.wikipedia.org/wiki/Wikipedia:Featured_article_

criteria
12 http://en.wikipedia.org/wiki/Wikipedia:Peer_review

References

[1] R. J. Ross, Hypertextbooks and a Hypertextbook
Authoring Environment, Proceedings of the 13th annual
conference on Innovation and technology in computer
science education (ITiCSE’08). ACM. 2008. 133-137.

[2] A. B. Cunningham, and R. J. Ross, “Hypertextbook for
the Web - Advances and Evaluation”. Working paper.
Department of Computer Science, Montana State
University, Bozeman, Montana. 2008.

[3] T. A. Yang, D. J. Kim, V. Dhalwani, and T. K. Vu, The
8C Framework as a Reference Model for Collaborative
Value Webs in the Context of Web 2.0, Proceedings of the
Hawaii International Conference on System Sciences
(HICSS-41). 2008.

[4] T. O'Reilly, What is Web 2.0? Design Patterns and
Business Models for the Next Generation of Software, 2005.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3
0/what-is-web-20.html

[5] A. Ciffolilli, Phantom authority, self-selective
recruitment and retention of members in virtual
communities: The case of Wikipedia, First Monday, 8(12),
December 1, 2003 (archived at http://www.firstmonday.org)

[6] S. Sajjapanroj, C. Bonk, M. Lee, and G. Lin, The
Challenges and Successes of Wikibookian Experts and
Want-To-Bees, Proceedings of World Conference on E-
Learning in Corporate, Government, Healthcare, and
Higher Education 2006

. 2329-2333.

http://en.wikipedia.org/wiki/Wikipedia�

http://en.wikibooks.org/wiki/Wikibooks:History_of_Wikibooks�

http://en.wikibooks.org/wiki/Wikibooks:History_of_Wikibooks�

http://en.wikibooks.org/wiki/Special:Statistics�

http://en.wikibooks.org/wiki/Main_Page�

http://meta.wikimedia.org/wiki/Help:Images_and_other_uploaded_files�

http://meta.wikimedia.org/wiki/Help:Images_and_other_uploaded_files�

http://www.mediawiki.org/wiki/Category:Audio_player_extensions�

http://www.mediawiki.org/wiki/Category:Audio_player_extensions�

http://www.mediawiki.org/wiki/Category:Video_player_extensions�

http://www.mediawiki.org/wiki/Category:Video_player_extensions�

http://www.mediawiki.org/wiki/Extension:Javascript�

http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Books/Assessment#Quality_scale�

http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Books/Assessment#Quality_scale�

http://en.wikipedia.org/wiki/Wikipedia:Featured_articles�

http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria�

http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria�

http://en.wikipedia.org/wiki/Wikipedia:Peer_review�

http://www.firstmonday.org/�

		ABSTRACT

		KEY WORDS

		Introduction

		Related Work

		WIKIPEDIA (as an example of Web 2.0 applications)

		HYPERTEXTBOOKS

		WIKIBOOKS

		Comparison of Wikibooks, Hypertextbooks, and Open Hypertextbooks

		Challenges of developing Open Hypertextbooks

		How do we retain the rich media types currently in Hypertextbooks when moving to the MediaWiki platform?

		How do we maintain the quality of the content required of an online textbook when moving to the open content environment of MediaWiki?

		An Open Hypertextbook for Teaching Wireless Sensor Networks

		Discussion and Future Work

		Acknowledgment

		End Notes

		http://en.wikipedia.org/wiki/Wikipedia

		References

WSNED - A SUITE OF DATA COLLECTION AND DISSEMINATION
APPLICATIONS FOR WIRELESS SENSOR NETWORK EDUCATION

Bo Sun, Lawrence Osborne T. Andrew Yang

 Department of Computer Science Division of Computing and Mathematics
 Lamar University University of Houston – Clear Lake

Beaumont, TX 77713 U.S.A. Houston, TX 77058 U.S.A.
{bsun, ljosborne}@my.lamar.edu yang@uhcl.edu

ABSTRACT
Wireless Sensor Networks (WSNs) have become an ideal
area of study to provide a wide range of applications for
teaching Computer Science and Engineering courses,
such as Computer Networks, Operating Systems,
Software Engineering, and Embedded Systems. However,
the complexities and extensive background knowledge
requirement of WSNs make the design of suitable WSN
courses a non-trivial task. The principle that learning must
be grounded in experience necessitates a suite of suitable
WSN applications for students to gain hands-on
experience in order to deepen their understanding of
WSNs. In this paper, focusing on using WSN data
collection and dissemination as examples to provide
technology-based education and training, we present a
suite of practical WSN applications based on TinyOS 2.x
(the dominant second generation operating system for low
power WSNs) and MicaZ motes. Our presented suite
ranges from the easy Listen-BaseStation-BlinkToRadio
one-hop data collection application to the complex
Octopus multi-hop data collection and dissemination
application. For each of the applications, we illustrate its
configuration details and the related background protocol
principles. These applications can provide students with a
deep understanding of WSNs and therefore intrigue their
interests to achieve effective learning.

KEY WORDS
Wireless Sensor Networks, Applications, TinyOS, Data
Collection and Dissemination.

1. Introduction

Wireless Sensor Networks (WSNs) have become ideal
candidates to provide effective and economically viable
solutions for a large variety of applications ranging from
health monitoring, scientific data collection,
environmental monitoring to military operations.
Combining advanced technologies from Computer
Networks, Operating Systems, Software Engineering, and
Embedded Systems, WSNs have become a perfect
example system for modern teaching and learning.
Therefore, many universities offer related courses to
introduce the basic principles of wireless sensor networks.
Unfortunately, many of these courses only focus on the
theoretical part of WSNs and lack a necessary component

in education - experimental learning [1]. To achieve
effective learning, students usually need vivid
applications through which they can gain a deep
understanding of WSNs by engaging hands-on projects. A
suitable set of applications could also greatly benefit
instructors to better introduce related concepts and
protocols of wireless sensor networks.

Unfortunately, current WSN curricula lack a suitable suite
of applications, mainly due to the complexity of WSNs
and the difficulty of configuring WSN development
environments. For example, even the most basic data
collection application for one-hop WSNs requires
considering the complex interactions among sensors,
motes, and PCs. Furthermore, TinyOS [5], the dominant
operating system for low power WSNs, is open source,
which means no commercial support is yet available to
cover mote programming, mote to mote communication
and mote to PC communication. Currently, WSN
application development is largely based on resources
shared in the TinyOS community. However, the TinyOS
community only provides very limited information. This
is especially true for TinyOS 2.x [12] which is the second
generation operating system for WSNs and is therefore
relatively new. Many applications based on TinyOS 2.x
do not have any tutorial at all. It is therefore easy to make
all kinds of mistakes when presenting relevant
applications. Some WSN applications require the
inspection of source codes in order to understand their
behavior.

To fill the aforementioned void in WSN education, we
have obtained a feasible way to set up an easy-to-complex
suite of WSN applications, named WSNED (Wireless
Sensor Network EDucation), based on TinyOS 2.x [5].
Aiming at providing technology-based education,
WSNED illustrates the most basic functions promised by
WSN, data collection and dissemination, and enables
technology-based learning. Specifically, the functions
introduced in WSNED include: a. mote to mote
communication; b. mote to PC communication; c. sensing;
d. self-organizing properties of WSNs; e. data collection;
f. data dissemination; g. remote data collection.
Specifically, the following applications are presented:

• Listen - BaseStation - BlinkToRadio: This is the most

basic data collection application for one-hop WSNs. A
text interface is used in the PC side to display the
collected data;
• Oscilloscope: Oscilloscope is still a data collection
application for one-hop WSNs. Compared with Listen -
BaseStation - BlinkToRadio, Oscilloscope provides a GUI
interface to facilitate data display in the PC side;
• MultihopOscilloscope: Based on the Collection Tree
Protocol [8], MultihopOscilloscope is a data collection
application for multi-hop WSNs. It also demonstrates the
self-organizing capabilities of WSNs;
• MViz: MViz is also a data collection application for
nultihop WSNs. Compared with MultihopOscilloscope,
MViz provides a GUI interface that can generate the self-
organized WSN network topology;
• Octopus: Octopus is the most complex application we
present in the paper. Besides providing data collection
functions, Octopus also implements data dissemination
functions for multi-hop WSNs. Considering the fact that
WSN network topology is typically dynamic and network
membership is not static, Octopus also provides a more
dynamic network topology than that of MViz.

Accompanying each of the applications is a brief
introduction of the underlying network protocols and
design principles, including how the protocols are
designed and implemented, how the data are transmitted
through protocol stacks and radio stacks, etc. By adopting
the presented applications, an instructor provides students
with the opportunity to develop and observe real WSNs,
which are manageable in a classroom setting and can
intrigue students’ interests to further explore the various
components of WSNs and how they work together to
form an effective application. To facilitate easy adoption
of the suite of WSN applications, we have made available
in this paper all the relevant materials, including the
URLs of the websites (see Appendix C) where the
applications’ source codes can be downloaded,
configuration instructions for setting up the applications,
etc. This paper also serves as a tutorial for deploying
those applications. We intend to create additional tutorials
and FAQs (Frequently Asked Questions) to cover
common problems that may be encountered by the
students when running those applications.

2. Related Work

2.1. TinyOS

TinyOS is an open source operating system designed
specifically for low powered embedded wireless sensor
nodes. Written in NesC, TinyOS is now the dominant
operating system for sensornets. TinyOS aims at
providing efficient yet flexible component-based
applications. Little more than a non-preemptive scheduler,
TinyOS applications are built from a large number of
libraries of components [12].

The battery powered sensor nodes need to last unattended

for a long time of periods, which makes energy a very
valuable resource. To save energy and to increase the
concurrency, operations in TinyOS are split-phase, which
means the call to start a long task returns immediately and
later receives a signal from the called component when
the operation is done.

2.2. WSN Courses and Applications

Many WSN courses already exist in various universities
and colleges. For example, WSN courses have been
offered as special topics courses in most prestigious
research universities. However, in most of those courses,
only a reading list is presented and students are required
to read papers and give research presentations. The final
projects in these courses usually require writing a
proposal illustrating research ideas. This kind of
instruction formats may be suitable for research oriented
institutes, because most students taking WSN courses aim
at a Ph.D. degree. However, for small universities or
teaching-oriented colleges, reading papers alone may
become a daunting task, which makes it difficult for
students to grasp the principles of wireless sensor
networks.

There also exist open accessed sensor network labs. For
example, MoteLab [13] from Harvard provides a public
WSN testbed for development and testing of sensor
network applications. However, this kind of labs can only
be used by students after they have already developed
some basic ideas of WSNs.

Numerous large-scale WSN applications have been
deployed in field. For example, WSNs have been
deployed to monitor seabird nesting environments on a
small island off the coast of Maine [14]. WSNs have also
been deployed to monitor a 70-meter tall redwood tree
[15] to collect related air temperature, relative humidity,
and photo synthetically active solar radiation.
Unfortunately, it is impossible to reproduce these large-
scale deployments of WSNs in classrooms.

It is therefore desirable to design a suite of WSN
applications for educational uses. The applications will
provide hands-on experience to complement students’
learning of WSN theories. By developing the applications
in the suite, students will gain deeper insights about the
underlying protocols and design principles of WSN
applications.

3. WSNED Suite of Applications

In this section, we present the details of the suite of WSN
applications in WSNED. Before presenting the
applications in detail, we first discuss the various
environments in which the applications may be deployed.
For each of the applications, we present the details about
how to set up the communications among motes, how to
set up the communications between motes and PC, and

how to remotely read sensed values over the Internet.

3.1. Environment Setup

For education purposes, we provide flexible host and
network configurations for our presented WSN
applications. Specifically, we present how to set up an
application in various environments, including stand-
alone PC, Local Area Network (LAN), and Internet. The
stand-alone PC environment represents the most basic
environment to run any WSN applications. It can
demonstrate the necessary components in order for WSNs
to work. Local Area Network and Internet environments
make WSN applications more practical and interesting.
To illustrate this point, just imagine the typical scenario: a
field officer wants to remotely monitor temperature
values of a field in ANY PC that connects to the Internet.

1) Stand-alone PC: Traditionally, it is not easy to set up a
developmental environment for sensor networks.

Although TinyOS community lists relatively detailed
steps [2] to set up the environment under both Windows
XP and Linux, many questions still come up. A quick look
at the questions posted at TinyOS mailing lists [3] can
confirm this observation.

In order to provide an easy-to-deploy WSN development
environment, we create a development package based on
the XubunTOS environment [4], which contains the
TinyOS 1.x and 2.x [5] working environments based on a
Xubuntu Linux [7] live CD. As a start, the user of that
package may install the WSN development environment
on a stand-alone PC. Figure 1(a) illustrates such a simple
installation. In Figure 1(a), one MicaZ mote and one
MIB520 gateway board from CrossBow [6] are coupled
together to provide the gateway function; three additional
MicaZ motes are used as sensor nodes, which perform
data collection functions and transmit the collected data to
the PC.

(a) Stand-alone PC Environment.

(b) Three Different Environments to Run WSN Applications.
Figure 1. How to Run WSN Applications.

Generally, any application under TinyOS can be
categorized into either of two types:

• Embedded Programs: These are NesC programs that
need to be installed on motes, for example, MicaZ motes
[6]. Basic functions of these embedded programs include
sensing, data receiving, data transmitting, and interactions
with gateway boards to forward data to PCs. To compile
and upload applications, one needs to go to the specific
application directory. For example, the BaseStation
application is located at $TOSROOT/apps/BaseStation.

• Gateway Programs: These are programs that run on PCs
and interact with gateway boards to retrieve sensor data.
Java language is widely used to implement gateway
programs for mote to PC communications. Many
important Java applications are located under
$TOSTOOR/support/sdk/java/net/tinyos/. For example,
tool Listen, which prints out the binary contents of heard
packets on the PC, is located at
$TOSTOOR/support/sdk/java/net/tinyos/tools/Listen.

2) Local Area Network and Internet: In this category,
usually only the gateway program is required to run on
remote PCs (probably used by a human operator to
monitor the collected data). The stand-alone PC (working
as a base station of the WSN) can open a packet source, a
communication medium over which an application can
receive and send packets [5]. Remote PCs can then
connect to this packet source to retrieve sensor data.
There are two popular types of packet sources:

• serial@PORT:SPEED: This means that the computer’s
serial ports are used as packet source. Suppose that the
MIB520, a USB gateway, is used as the gateway
hardware. PORT is then /dev/ttyUSB1. If MicaZ motes
are used as wireless modules, SPEED is then 57600,
which is the baud rate for MicaZ motes. The MOTECOM
environmental variable can be set as export
MOTECOM=serial@/dev/ttyUSB1:micaz.
This indicates that a PC serial port is used as the packet
source.

• sf@HOST:PORT: This means that a packet source (e.g.,
SerialForwarder) runs on the PC HOST and port PORT.
Therefore, remote computers can connect to HOST and
PORT over TCP/IP.

Figure 1(b) summarizes the example environments for
stand-alone PC, LAN, and the Internet. In Figure 1(b), PC
A provides one example of the stand-alone PC
configuration, PC B provides one example for LAN
configuration, while PC C provides one example for the
Internet configuration.

In the following, we provide step-by-step instructions to
demonstrate our WSN applications. Throughout the rest
of this paper, we use a series of products from CrossBow
[6] as example hardware. Specifically, we use MicaZ
motes as the wireless modules, MTS300 as the sensor
boards, and MIB520 as the gateway board to connect
motes to the PCs. The XBow website contains a reference
for product details.

For the LAN environment, the rest of applications have
been tested in a research lab at Lamar University. For the
Internet environment, we set up the sensor network in the
research lab at Lamar University. In the research lab at
University of Houston at Clear Lake (UHCL), we run
related applications to remotely read the sensor data
collected at Lamar University over TCP/IP. Because the
gateway programs at remote computers are the same
under LAN and Internet environments, in the following,
we only use the Internet as the example to illustrate the
details.

3.2 Application One: Listen - BaseStation –
BlinkToRadio

Listen - BaseStation - BlinkToRadio provides one of the
most basic data collection examples in one-hop WSNs.
The BaseStation application acts as a bridge between the
PC serial port and the WSN. Whenever the BaseStation
sends a packet to the sensor node through the serial port
of the PC, LED 1 (Green LED) on the MicaZ mote is
toggled. LED provides one of most basic approaches to
debug WSN applications. To run this application, we need
to upload the BaseStation binary image into the MicaZ
mote that is connected to the PC through the MIB520
gateway (see Figure 2).

The purpose of the BlinkToRadio application is to
transmit a data packet containing node ID whenever there
is a firing of the timer event. In BlinkToRadio, the
message is transmitted using the AMSend.send() to the
broadcast address AM BROADCAST ADDR. We skip
their introduction in this paper. For details, please refer to
the TinyOS documentation [5].

On the PC side, whenever a packet is received, the Listen
tool simply prints out the received message in a binary
format. When the Listen tool is started, it can be
configured to connect to different packet sources (See the
implementation in BuildSource.makePacketSource() and
net/tinyos/toolsListen.java). Here the packet source can be
a local serial port or a remote port accessed through
TCP/IP.

Following the environment introduced in Figure 1(b),
Figure 2 presents the basic steps concerning how to set up
and run the Listen - BaseStation - BlinkToRadio
application. For the details about each step, please refer to
Appendix A. As illustrated in Figure 2, we have four
options when running this application:

• Option 1: The Listen tool directly reads data from the

serial port at the local PC A;
• Option 2: We run a SerialForwarder in local PC A,

which provides a packet source for received sensor
data. We run the Listen tool to read data from this
SerialForwarder;

• Option 3:
– We run a SerialForwarder in local PC A, which

provides a packet source for received sensor data.
– We run the Listen tool in a remote PC B located at

UHCL to read from the SerialForwarder running at
PC A. In this way, the data collected at Lamar
University can be remotely displayed over the
Internet.

In the example illustrated in Figure 2, the
SerialForwarder running at PC A provides a packet
source of format sf@140.158.130.239:9002.
Therefore, remote computers, like PC B in UHCL,
can connect to it over TCP/IP.

• Option 4:
– We run a SerialForwarder in local PC A, which

provides a packet source for received sensor data.
– We run a SerialForwarder in remote PC B, which

provides a packet source based on the packet source
provided in PC A.

– We run the Listen tool in remote PC B or some other
remote PCs to read data from the SerialForwarder
running at PC B. In this way, the data collected in
Lamar University can be forwarded to a remote
SerialForwarder over the Internet. This option
demonstrates the great flexibility of running WSN
applications.

Although Listen - BaseStation - BlinkToRadio only
provides the most basic data collection application, it
fully demonstrates the flexibility of network configuration
to run a WSN application. Important concepts, including
SerialForwarder and packet source, can be studied in
detail through this application.

Figure 2. Listen - BaseStation - BlinkToRadio.

The rest of the applications can also be configured in
similar manner as the Listen – BaseStation -
BlinkToRadio application. To save space, we skip the
network configuration of the following applications,
while focusing on their unique functionalities.

3.3 Application Two: OscilloScope

Listen - BaseStation - BlinkToRadio application suffers
from the following drawback: it only provides a text
based interface to display sensor data in a binary format.
Therefore, it is difficult to inspect and analyze the
received data. To overcome this shortcoming, we
introduce Oscilloscope application, which provides a GUI
user interface for viewing the collected data.

On the mote side, Oscilloscope does not introduce much
more complexity than Listen -BaseStation - BlinkToRadio.
On the PC side, however, Oscilloscope provides a GUI
interface to display the received data. We can, of course,
still use the Listen tool to display the received data. The
environment to run Oscilloscope is very similar to run
Listen - BaseStation - BlinkToRadio application. The
main difference is that we can invoke the
Oscilloscope/java/run tool to invoke a GUI interface to
display the received data. We skip the figure to run the
Oscilloscope application to save space. Interested readers
may download the figure from our course website at
http://galaxy.cs.lamar.edu/~bsun/wsn/wsn.html.

3.4 Application Three: MultihopOscilloScope

Previous applications, i.e., Listen - BaseStation -
BlinkToRadio and Oscilloscope, only form a single hop
sensor network. In practice, each mote has limited
transmission range. Therefore, a multi-hop sensor
network is more practical, where each node can act as a

router to relay messages from other nodes to the base
station. Furthermore, self-organization is an essential
requirement for WSNs, in which sensor nodes may
spontaneously create an impromptu network.

Figure 3. The Collection Tree Protocol.

MultihopOscilloscope is an application to demonstrate the
above essential functionalities. In MultihopOscilloscope,
nodes exchange beacon messages with their neighbors to
self-organize the network into a data collection tree rooted
at the root node with ID 0. MultihopOscilloscope is based
on the Collection Tree Protocol (CTP) [8], in which all
the nodes send data to the root of the tree. Three

http://galaxy.cs.lamar.edu/~bsun/wsn/wsn.html�

components, Link Estimation Engine, Routing Engine,
and Data Forwarding Engine, implement the core
functionalities of CTP. Their relationships are illustrated
in Figure 3.

• Link Estimation Engine: Each node runs a link
estimation protocol to determine the choice of valid routes.
In the current implementation of CTP, Expected
Transmissions (ETX) is used as the routing gradients. The
ETX of a node is the ETX of its parent plus the ETX of its
link to its parent. Therefore, ETX provides an estimate of
the number of transmissions it takes for one node to send
a unicast packet whose acknowledgment is successfully
received [8]. The Link Estimation Engine creates the Link
Estimation Table for the node.

• Routing Engine: Based on the collected link quality, the
routing engine can then decide the next neighbor to
transmit data. Because WSN network membership is
typically not static and link quality can vary significantly,
the routing topology can also change dynamically. The
Routing Engine generates the Routing Table for the node.

• Data Forwarding Engine: Based on the routing tables,
the Data Forwarding Engine transmits the received
packets. If a route is not available, the data forwarding
engine maintains the queue of packets to be transmitted
until the route is set up.

For similar reasons, the environment to run the
MultihopOscilloscope application can be downloaded at
http://galaxy.cs.lamar.edu/~bsun/wsn/wsn.html.

3.5 Application Four: MViz - Remote GUI Reader

Based on CTP, MViz is a further improvement over
MultihopOsciloscope. First, the gateway program of the
MViz application can display the self-organized network
topology. This provides a great amount of information for
users. Second, the gateway program provided by MViz is
readily run to remotely retrieve data over the Internet
through TCP/IP. As demonstrated in Figure 6, we collect
the temperature and light data in one research lab in
Lamar University and display the data remotely at UHCL.
Appendix B lists extra necessary configuration in order to
run the MViz application.

3.6 Application Five: Octopus

The WSN network topology is a very useful piece of
information because it shows the dynamic connection
among sensor nodes. One drawback of the displayed
network topology in MViz application, however, is that it
does not provide a timeout feature which can dynamically
update the network topology. A more static topology is
better for running MViz applications. Unfortunately, this
is not often true as node connections in WSNs change
over time.

As a further improvement over MViz, Octopus [10]
provides a modular visualization and control tool for
sensor networks. Compared to MViz, Octopus provides a
timeout feature which can dynamically display the
changed network topology. Furthermore, Octopus
incorporates the data dissemination [9] utility to provide
useful remote reprogramming functions. The data
dissemination utility is implemented using TEP 118 [9],
which is a proposal to establish eventual consistency on a
shared variable. An example of a shared variable includes
a new data sampling frequency which should be
disseminated throughout the whole network.

TEP 118 is based on Trickle [11], which mainly focuses
on addressing the issue of when shared small values
should be exchanged among nodes in order to achieve
value consistency. Because the communication
demonstrates highly transient loss patterns and
networking membership is not static in WSNs, Trickle is
designed to achieve the tradeoff between rapid
propagation and low maintenance. For details and
performance analysis of Trickle, one can refer to [11].

4. Conclusions and Future Work

In this paper, we present a suite of practical applications -
WSNED (Wireless Sensor Network EDucation). WSNED
is built upon TinyOS 2.x and is flexible for the
configuration of a standalone PC, Local Area Network
and the Internet. WSNED focuses on the most basic
functions promised by WSNs, data collection and
dissemination, and provides easy-to-complex
demonstrations for students. We also introduce related
background protocol principles for WSNED. These
applications can provide students with a deep
understanding of WSNs and inspires them to achieve
effective learning.

We presented the applications of WSNED in a 2009
SIGCSE workshop [16]. Feedback from the participants
in that workshop was very positive. Participants generally
felt that the applications were well designed to enable
effective learning; the learners were presented with
applications of various complexities, from simple to
intermediate to challenging. Some of the participants
expressed their interests in adopting the WSNED
applications in teaching wireless sensor networks in their
own courses.

The presented applications in WSNED were used in
teaching a Computer Science course in Wireless Sensor
Networks at the Department of Computer Science at
Lamar University in summer 2008 and 2009. Based on
students’ feedback, we observed that WSNED greatly
facilitated students’ interests in WSN study, which can
foster both graduate and undergraduate research
environment, encourage student collaboration, and
enhance their confidence for future career. Faculty
members adopting WSNED felt that it was easier to teach

http://galaxy.cs.lamar.edu/~bsun/wsn/wsn.html�

relevant concepts about WSNs using the presented
applications. The different environment we present in
Section 3.1 makes it flexible for both students and faculty
members to set up and to develop WSN applications.
Considering the relatively low prices of sensor nodes,
instructors at other universities may easily use different
number of sensor nodes to set up applications at different
scales by considering their financial situations.

As part of the future work, we plan to introduce WSNED
into the Computer Science curricula at Lamar University
and UHCL. Based on students’ feedback, we plan to
further elaborate on this set of applications and conduct a
formal assessment of WSNED. We also plan to introduce
more applications and related lab exercises to assist in
presenting additional important concepts of sensor
networks.

Acknowledgements

This work was supported in part by grants from US NSF
(DUE-0633445 and DUE-0633469) and the Institute of
Space Systems Operations (ISSO).

References

[1] P. Denning, “Great Principles in Computing
Curricula,” Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, Norfolk, VA,
2004, pp. 336-341.
[2] http://www.tinyos.net/tinyos-2.x/doc/html/install-
tinyos.html, accessed in May 2008.
[3] http://mail.millennium.berkeley.edu/pipermail/tinyos-
help/, accessed in May 2008.
[4] http://toilers.mines.edu/Public/XubunTOS, accessed in
May 2008.
[5] http://www.tinyos.net, accessed in May 2008.

[6] http://www.xbow.com, accessed in May 2008.
[7] http://www.xubuntu.org, accessed in May 2008.
[8] http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html,
Collection Tree Protocol (CTP), accessed in May 2008.
[9] http://www.tinyos.net/tinyos-2.x/doc/html/tep118.html,
Dissemination of Small Values, accessed in May 2008.
[10] http://csserver.ucd.ie/˜rjurdak/Octopus.htm, accessed
in May 2008.
[11] P. Levis, N. Patel, D. Culler, and S. Shenker,
“Trickle: a Self-Regulating Algorithm for code
Propagation and Maintenance in Wireless Sensor
Networks”, Proceedings of the 1st Conference on
Symposium on Networked Systems Design and
Implementation (ACM NSDI), San Francisco, CA, 2004.
[12] P. Levis, et al. “T2: A Second Generation OS for
Embedded Sensor Networks,” Technical Report TKN-05-
007, Telecommunication Networks Group, Technische
Universitat Berlin, Nov. 2005.
[13] G. Werner-Allen, P. Swieskowski, and M. Welsh,
“MoteLab: A Wireless Sensor Network Testbed,” Fourth
International Symposium on Information Processing in
Sensor Networks (IPSN), Los Angeles, CA, 2005, pp.
483-488.
[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson, “Wireless Sensor Networks for Habitat
Monitoring”, Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications
(WSNA), Atlanta, GA, 2002, pp. 88-97.
[15] G. Tolle, et al. “A Macroscope in the Redwoods,”
Proceedings of the 3rd International conference on
Embedded Networked Sensor Systems (ACM SenSys), San
Diego, CA, 2005, pp. 51-63.
[16] B. Sun, and T. Andrew Yang, “Teaching Application
Development of Wireless Sensor Networks using Motes
and Sensors”, Workshop proposal in 40th ACM SIGCSE,
March 4-7, 2009, Chattanooga, TN U.S.A.

Appendix A - Detailed Commands Used in this Paper

• Local Listen connecting to serial port: java net.tinyos.tools.Listen -comm serial@/dev/ttyUSB1:micaz
• Local Listen connecting to local SerialForwarder: java net.tinyos.tools.Listen -comm sf@localhost:9002
• Remote Listen: java net.tinyos.tools.Listen -comm sf@140.158.130.239:9002
• SerialForwarder connecting to local machine: java net.tinyos.sf.SerialForwarder -comm
serial@/dev/ttyUSB1:micaz
• SerialForwarder connecting to remote SerialForwarder: java net.tinyos.sf.SerialForwarder -comm
sf@140.158.130.239:9002
• Set up MOTECOM environment as local serial port: export MOTECOM=serial@/dev/ttyUSB1:micaz
• Set up MOTECOM environment as local SerialForwarder: export MOTECOM=sf@localhost:9002
• Set up MOTECOM environment as remote SerialForwarder: export MOTECOM=sf@140.158.130.239:9002
• Gateway program for Oscilloscope Application: oscillloscope/java/run
• Gateway program for MultihopOscilloscope Application: MultihopOscilloscope/java/run
• Local gateway program for Mviz Application: tos-mviz -comm sf@localhost:9002 -dir
/opt/tinyos-2.x/apps/MViz MVizMsg
• Remote gateway program for Mviz Application: tos-mviz -comm sf@140.158.130.239:9002 -dir /opt/tinyos-2.x/apps/Mviz
MVizMsg

mailto:sf@140.158.130.239:9002�

• Gateway program for Octopus Application: java OctopusGui

Appendix B - Appendix for Extra Configuration when Running MViz Application

• Add SENSORBOARD=mts300 in Makefile when compile
• Modify MVizSensorC.nc to add related sensors
• Based on MultihopOscilloscopeC.nc, the root id should be 0
– For root node: make micaz install,0 mib510,/dev/ttyUSB0
– For non-root node (e.g. node 1): make micaz install,1 mib510,/dev/ttyUSB0
• chmod 666 /dev/ttyUSB*
• How to configurate light, temperature sensors? Modify:
– $TOSROOT/tos/platforms/micaz/DemoSensorC.nc
– $TOSROOT/tos/sensorboards/mts300/DemoSensorC.nc
– $TOSROOT/apps/Mviz/MVizSensorC.nc

Appendix C - Appendix for URLs to Download Applications Illustrated in this Paper

TABLE I URLS FOR ILLUSTRATED APPLICATIONS

Application URL
BaseStation http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/apps/BaseStation
BlinkToRadio http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/apps/tutorials/BlinkToRadio
Listen http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/support/sdk/java/net/tinyos/tools/Listen.java
OscilloScope http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/apps/Oscilloscope
MultihopOscilloScope http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/apps/MultihopOscilloscope
MViz http://tinyos.cvs.sourceforge.net/tinyos/

tinyos-2.x/apps/MViz
Octopus http://csserver.ucd.ie/˜rjurdak/Octopus.htm

http://tinyos.cvs.sourceforge.net/tinyos/�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 1

Final Report for the NSF CCLI Project (DRAFT, October 14, 2009)

1. Project Title:

Collaborative Research: Module-based Courseware and Laboratory Development for Teaching
Secure Wireless Sensor Networks

2. PIs of the Project:

Dr. Toneluh Andrew Yang (University of Houston Clear Lake, Award number: 0633469)

Dr. Bo Sun (Lamar University, Award number: 0633445)

3. Duration of the Project:

4/1/2007 – 12/31/2009

Note: The original project duration, 4/2007 – 3/2009, was extended to 12/2009 in order for the PIs to
complete the proposed tasks.

4. Brief Description of the Project

The project is collaboration between Lamar University and University of Houston Clear Lake. The
PIs proposed the development of educational materials for teaching Wireless Sensor Networks
(WSN) tailored for undergraduate students by using real-world WSN applications as case studies and
avoiding complex theoretical discussions and mathematics. Major outcome from the project include
courseware modules and labs. The courseware modules were designed as self-contained teaching
units for specific topics in wireless sensor networks; the modules and the accompanying labs together
should help interested instructors of relevant computer science or engineering courses to introduce
topics of wireless sensor networks by adopting relevant modules. The modules are supplemented by a
sequenced set of hands-on laboratory projects, which allow the students to explore the various aspects
of wireless sensor networks, from the introductory lab of learning the Tiny OS version 2 to more
advanced labs covering the security and energy management of wireless sensor networks. The PIs
have performed both formative and summative evaluations of the developed modules, and have
conducted a workshop to disseminate the modules and labs. Referred publications and Web sites are
also used as dissemination tools of the research findings.

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 2

5. Goals of the Project

This project has two primary goals: (a) To develop an educational infrastructure at University of
Houston-Clear Lake and Lamar University for teaching wireless sensor networks and their security
solutions in undergraduate computer science and engineering curricula; (b) To establish a courseware
repository where computer security and wireless sensor network modules and related educational
materials may be collected, and freely accessible by educators, students, and the general public.

6. Results of the Project

Major outcomes of the project include nine course modules, a set of labs, assignments, and projects,
three assessment instruments and the respective assessment results, Web sites for disseminating the
project, four refereed publications, two working papers, one workshop, and three presentations.

6.1. Educational Materials

The PIs have developed nine practical modules to teach secure wireless sensor networks.

1. Introduction to Wireless Sensor Networks;

2. TinyOS;

3. Energy Management;

4. Radio and Medium Access Control (MAC);

 5. Wireless Link Estimation;

6. Data Collection and Dissemination;

7. Security of Wireless Sensor Networks;

8. Localization and Secure Localization;

9. Aggregation and Secure Aggregation.

Relevant assignments, labs, and projects were also developed to facilitate students’
understanding of those modules.

The following Web sites have been used to disseminate the modules:
http://sce.uhcl.edu/yang/public/Modules.html.

6.2. Assessment Instruments

In order to assist the development of the WSN modules, both formative and summative evaluations
were performed to improve the development process.

http://sce.uhcl.edu/yang/public/Modules.html�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 3

6.2.1. Formative Assessment Instruments

To evaluate the whole set of the modules, the following instrument (Table 1) was used; the instrument
is composed of four criteria and relevant evaluation questions. Based on the results and comments
made by the internal evaluators, the modules were revised to remove the identified deficiencies.

Table 1. The instrument for formatively evaluating the whole set of modules

Criteria Evaluation questions Evaluation results & comments
1) The set of modules should

cover sufficient topics with
respect to the chosen
subject.

a) Are the topics covered in the
modules sufficiently
comprehensive with respect to
the subject?

2) The set of modules should
form a structured sequence
of learning units.

b) Are the prerequisite
relationships, if any, between
the modules clearly defined?

3) The overall design of the
modules should encourage
collaboration among
students.

c) Are sufficient collaborative
activities/projects built into
the modules?

4) The design of the modules
should consider students
with diversified
capabilities and strengths.

d) Are the modules designed in
such as a way that students
may tackle modules of
various level of difficulty?

For each of the modules, another instrument (Table 2) was developed to formatively evaluate the
module. Six criteria and a set of relevant evaluation questions were applied to each individual module
to ensure that each module is a self-contained, easy to adopt teaching unit. After the formative
evaluation, each module is revised according to the evaluation results.

Table 2. The instrument for formatively evaluating an individual module

1. For each of the modules:
Module number and name: Module x: …

Criteria Evaluation questions Evaluation results

& comments
1) Sufficient details should

be provided to the
students in order for them
to ‘execute’ the project(s)
in the module.

a) Are the required hardware, software,
and their configurations clearly
explained in the modules?

b) Is the description of each module
free from typos and grammatical
errors?

2) The module should be
defined in such a way that

c) Does the module provide sufficient
information for students to reach the

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 4

the learning objectives are
met once the student has
satisfactorily completed
the module.

anticipated learning objectives?
d) Is the set of activities in the module

sufficient to reach the anticipated
learning objectives?

3) The size of each module
should be appropriate
such that it could be
completed within
reasonable amount of
time.

e) Does the size and level of difficulty
of the module allow most students to
complete it within 5-10 hours?

4) Both fundamental and
practical knowledge and
skills should be addressed
in a module.

f) Does the module contain balanced
materials for students to acquire both
fundamental and practical knowledge
and/or skills?

5) The entry requirements of
a module should be
clearly defined.

g) Are the prerequisite knowledge
and/or skills of the module clearly
defined?

6) When feasible, a module
should be independent,
meaning that it can be
taught all by itself without
requiring a prerequisite
set of modules to be used
first.

h) Can relevant module alone (without
other accompanying modules) be
adopted by an instructor in his/her
teaching?

Information about the assessment instruments, including the original modules, the evaluation results,
and the revised (current) modules, are available from
http://sce.uhcl.edu/yang/public/evaluations/ModuleEvaluation.html.

6.2.2. Summative Assessment Instruments

While formative evaluations as described above were used to refine the course modules during the
development process, summative evaluations were performed while the modules were actually used
by instructors in teaching wireless sensor networks. The instrument the PIs developed for the purpose
of summative evaluation of the modules is in the form of student survey. Table 3 shows the
instrument, which is composed of three categories and 17 evaluation questions. The instrument was
used in two different classes; the results in Table 3 were collected from one of the classes taught in
summer 2008.

Students answered each of the evaluation questions by choosing a score on the scale of 1 to 5, with 5
being Strongly Agree and 1 being Strongly Disagree. As shown in Table 3, the feedback from
students about the course modules was very positive.

Table 3. Student Evaluation
Categories Evaluation Questions

Average Standard

http://sce.uhcl.edu/yang/public/evaluations/ModuleEvaluation.html�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 5

Score Deviation

• General
Questions

1) I have learned a great deal from this class. 4.72 0.467

2) Students have the opportunities to be exposed to practical aspects of
wireless sensor networks.

5 0

• Questions
about the
Project

3) The project is necessary in this class. 5 0

4) The project in this class is challenging. 4.72 0.467

5) The project in this class is very interesting. 4.9 0.301

6) The project in this class requires a lot of skills to finish. 4.5 0.505

7) The project in this class is time-consuming. 4.5 0.505

8) The project is a valuable part of this class. 4.72 0.467

9) The project used in this class helps me improve my ability of problem
solving.

4.8 0.405

10) The project used in this class helps me improve my ability of creative
thinking.

4.73 0.467

11) The project used in this class helps me improve my ability of
independent thinking.

5 0

• Questions
about the
Course
Modules

12) The course materials covered in this class are difficult. 4.36 0.501

13) It is time-consuming to understand the course materials. 3.72 0.905

14) The course materials used in this class help me improve my ability of
problem solving.

4.81 0.405

15) The course materials used in this class help me improve my ability of
creative thinking.

4.81 0.405

16) The course materials used in this class help me improve my ability of
independent thinking.

4.54 0.505

17) The time spent in this class is worthwhile. 5 0

6.2.3. Online Assessment

As an alternative evaluation method of the developed modules, the PIs are currently developing an
online evaluation system to assess how the modules published at http://www.dcsl-
uhcl.net/public/Modules.html are used by the public. Other features such as discussion groups will
also be set up to facilitate online user discussions.

6.3. Web sites

http://www.dcsl-uhcl.net/public/Modules.html�

http://www.dcsl-uhcl.net/public/Modules.html�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 6

6.3.1. The following Web site was used in presenting a 2009 ACM SIGCSE workshop
“Teaching Application Development of Wireless Sensor Networks using Motes and
Sensors”: http://galaxy.cs.lamar.edu/~bsun/sigcse_09/sigcse_09.html

6.3.2. The following Web sites have been used to disseminate this project:

http://sce.uhcl.edu/yang/public/Modules.html

6.3.3. Reference links from the National Science Digital Library (NSDL) were added for the
public to access the developed modules:
http://nsdl.org/search/?n=10&q=sensor&Submit=Search&include_collection[]=oai%3An
sdl.org%3Ancs%3ANSDL-COLLECTION-000-003-111-905&s=0&verb=Search. The
link is also listed under http://nsdl.org/collection/computer-science/.

6.4. Related publications

Published and working papers are attached as the Appendix of this report.

6.4.1. Published and Accepted Publications

T. Andrew Yang, Vishal S. Jadhav, Darshan Chipade, and Bo Sun, “Web 2.0 as an
Enabler of Developing Open Content Online Hypertextbooks,” accepted to IASTED
International Conference on Computers and Advanced Technology in Education (CATE
2009), St. Thomas, US Virgin Islands, November 22-24, 2009.

Bo Sun, Lawrence Osborne, and T. Andrew Yang, “Module-based Courseware for
Teaching Secure Wireless Sensor Networks,” accepted to IASTED International
Conference on Computers and Advanced Technology in Education (CATE 2009), St.
Thomas, US Virgin Islands, November 22-24, 2009.

T. Andrew Yang, Deepesh Jain, and Bo Sun, “Development of emulation-based projects
for teaching wireless sensor networks”. Journal of Computing Sciences in Colleges,
24(2). Consortium for Computing Sciences in Colleges. Dec. 2008. pp. 64-71.

T. Andrew Yang and Dinesh Reddy Gudibandi, "Teaching Wireless Sensor Networks by
Incorporating Reorganization Algorithms into the Labs". Journal of Computing Science
in Colleges, 23(4). Consortium for Computing Sciences in Colleges. April 2008. pp. 80-
88.

6.4.2. To-be-submitted articles

Bo Sun, Lawrence, and T. Andrew Yang, “WSNED – A Suite of Data Collection and
Dissemination Applications for Wireless Sensor Network Education”, to be submitted to

http://galaxy.cs.lamar.edu/~bsun/sigcse_09/sigcse_09.html�

http://sce.uhcl.edu/yang/public/Modules.html�

http://nsdl.org/search/?n=10&q=sensor&Submit=Search&include_collection%5b%5d=oai%3Ansdl.org%3Ancs%3ANSDL-COLLECTION-000-003-111-905&s=0&verb=Search�

http://nsdl.org/search/?n=10&q=sensor&Submit=Search&include_collection%5b%5d=oai%3Ansdl.org%3Ancs%3ANSDL-COLLECTION-000-003-111-905&s=0&verb=Search�

http://nsdl.org/collection/computer-science/�

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 7

the South Central Regional Conference of the Consortium for Computing Sciences in
Colleges (CCSC), Austin, TX, 4/23 – 4/24/2010.

T. Andrew Yang and Bo Sun, “DEVELOPING AND EVALUATING COURSEWARE
MODULES - Experience of teaching wireless sensor networks”, to be submitted to the
South Central Regional Conference of the Consortium for Computing Sciences in
Colleges (CCSC), Austin, TX, 4/23 – 4/24/2010.

6.5. Presentations and workshops

B. Sun, and T. Andrew Yang, “Teaching Application Development of Wireless Sensor Networks
using Motes and Sensors”, workshop proposal presented at 40th ACM SIGCSE 2009, March 4-
7, 2009, Chattanooga, TN.

T. Andrew Yang, “Development of emulation-based projects for teaching wireless sensor
networks”, presented in the Tenth Annual Northwestern Regional Conference Consortium for
Computing Sciences in Colleges, Ashland, Oregon, October 10-11, 2008.

Bo Sun, “Module-based Courseware and Laboratory Development for Teaching Secure Wireless
Sensor Networks”, presented at NSF CCLI PI meeting, Washington DC, August 2008.

T. Andrew Yang, “Teaching Wireless Sensor Networks by Incorporating Reorganization
Algorithms into the Labs”, presented in the Sixth Annual CCSC Mid-South Conference, at
Arkansas Technical University in Russellville, Arkansas April 4-5, 2008.

7. Conclusion and Future Work

The PIs have successfully realized the two goals specified in this NSF CCLI project. 1) A courseware
has been created and freely accessible by educators, students, and the general public; 2) An
educational wireless sensor network infrastructure at University of Houston – Clear Lake and Lamar
University has been created to teach wireless sensor networks. In addition, formative and summative
evaluations were employed to evaluate the developed modules, which were revised according to the
evaluation results. The PIs have also disseminated our project through publications, workshop,
presentations, and related Web sites. In summary, the PIs have successfully completed this project.

As a potential extension of this project, the PIs plan to develop an online open content hypertextbook
for teaching Wireless Sensor Networks. A Hypertextbook is an online version of the traditional
textbooks. Different from a hardcopy textbook or an e-book, a Hypertextbook is similar to a Web-
based system, which provides attractive features such as dynamic interactions, multimedia
presentations, animations of important concepts and procedures, and pervasive availability wherever
Internet is accessible. Hypertextbooks may be adopted in traditional classroom teaching, but distance
education and Web-based education in particular can greatly benefit from the dynamic and user
friendly features provided by Hypertextbooks. Open Hypertextbooks combine the merits of
Hypertextbooks and features provided by Web 2.0 technology, especially the collaborative authoring

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

Module-based Courseware and Laboratory Development for Teaching Secure Wireless Sensor Networks
(DRAFT final report) 8

process and the collective intelligence resulting from that process. The result is an open content
online textbook with not only rich features typically available in a conventional textbook but also
flexibility allowing user contribution by adding and/or changing the content of the book. The PIs have
developed a prototype version of the Open Hypertextbooks for Wireless Sensor Network; they plan to
propose the complete development, evaluation and dissemination of the open Hypertextbook as a
NSF CCLI Phase II project in January 2010.

8. Appendix: Attached Papers

T. Andrew Yang and Dinesh Reddy Gudibandi, "Teaching Wireless Sensor Networks by
Incorporating Reorganization Algorithms into the Labs". Journal of Computing Science
in Colleges, 23(4). Consortium for Computing Sciences in Colleges. April 2008. pp. 80-
88.

T. Andrew Yang, Deepesh Jain, and Bo Sun, “Development of emulation-based projects
for teaching wireless sensor networks”. Journal of Computing Sciences in Colleges,
24(2). Consortium for Computing Sciences in Colleges. Dec. 2008. pp. 64-71.

Bo Sun, Lawrence Osborne, and T. Andrew Yang, “Module-based Courseware for
Teaching Secure Wireless Sensor Networks,” accepted to IASTED International
Conference on Computers and Advanced Technology in Education (CATE 2009), St.
Thomas, US Virgin Islands, November 22-24, 2009.

T. Andrew Yang, Vishal S. Jadhav, Darshan Chipade, and Bo Sun, “Web 2.0 as an
Enabler of Developing Open Content Online Hypertextbooks,” accepted to IASTED
International Conference on Computers and Advanced Technology in Education (CATE
2009), St. Thomas, US Virgin Islands, November 22-24, 2009.

Bo Sun, Lawrence, and T. Andrew Yang, “WSNED – A Suite of Data Collection and
Dissemination Applications for Wireless Sensor Network Education”, to be submitted to
the South Central Regional Conference of the Consortium for Computing Sciences in
Colleges (CCSC), Austin, TX, 4/23 – 4/24/2010.

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

http://portal.acm.org/citation.cfm?id=1409823.1409839&coll=GUIDE&dl=GUIDE&CFID=4531744&CFTOKEN=78462369�

