PAGE

PERFORMANCE AND SECURITY IN MOBILE AD HOC NETWORKS

by

Karthik Sadasivam, B.S.

THESIS

Presented to the faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

of the Requirements

for the Degree

MASTER OF SCIENCE

Computer Science

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

May, 2005

PERFORMANCE AND SECURITY IN MOBILE AD HOC NETWORKS

by

Karthik Sadasivam

APPROVED BY

 __

T. Andrew Yang, Ph.D., Chair

__

Alfredo Perez-Davila, Ph.D., Committee Member

__

Wei Ding, M.S., Committee Member

__

Robert Ferebee, Ph.D., Associate Dean

__

Charles McKay, Ph.D., Dean

Dedicated to

my beloved parents, sister, and all my friends who have encouraged me throughout this thesis

ACKNOWLEDGEMENTS

I would like to sincerely thank my mentor and committee chair Dr. Andrew Yang for his expert guidance and several timely inputs throughout the course of my thesis. I would also like to thank him for his constant motivation and funding during my graduate studies at the University of Houston-Clear Lake. I am also glad to have worked as research assistant under him for over a year, during which he helped me identify key research areas in network security, finally culminating in my thesis.

My special thanks to Dr. Sadegh Davari for his valuable suggestions and providing necessary infrastructure and support for my thesis. I am also grateful to Dr. Alfredo Perez-Davila and Ms. Wei Ding for serving in my thesis committee.

Last but not the least; I am thankful to all of my friends and colleagues who have extended their helping hand in one way or another and provided several valuable suggestions without which this thesis would not have been accomplished.

Karthik Sadasivam
March 2005

ABSTRACT

PERFORMANCE AND SECURITY IN MOBILE AD HOC NETWORKS
Karthik Sadasivam, M.S.

The University of Houston Clear Lake, 2005

Thesis Chair: T. Andrew Yang

A Mobile Ad-hoc NETwork (MANET) is an autonomous collection of mobile users that communicate over relatively bandwidth constrained wireless links. One of the main issues in such networks is performance- in a dynamically changing topology; the nodes are expected to be power-aware due to the bandwidth constrained network. Another issue in such networks is security - since every node participates in the operation of the network equally, malicious nodes are difficult to detect. There are several applications of mobile ad hoc networks such as disaster recovery operations, battle field communications, etc. To study these issues, a scenario based simulation analysis of a secure routing protocol is done and is compared with traditional non-secure routing protocols. The scenarios used for the experiments depict critical real-world applications such as battlefield and rescue operations, which tend to have contradicting needs. An analysis of the tradeoffs between performance and security is done to gain an insight into the applicability of the routing protocols under consideration.
TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS
iv

ABSTRACT
v

TABLE OF CONTENTS
vi

LIST OF TABLES
x

LIST OF FIGURES
xi

CHAPTER

1.
INTRODUCTION

1.1
Taxonomy of Wireless networks
2

1.1.1
WLANs and WPANs
2

1.1.2
Wireless WANs and MANs
3

1.1.3
Mobile Ad hoc and sensor networks
5

1.2
Advantages of Mobile Ad hoc Networks

6

1.3
Applications of Mobile Ad hoc Networks

6

1.4
General Issues in Mobile Ad hoc Networks
7

1.5
Thesis Outline

8

2.
ROUTING IN MANETs

2.1
Design Issues
10
2.2
Classification of the Routing Protocols
13
2.3
Table-Driven Routing Protocols
14
2.3.1
DSDV
14

2.3.2
WRP
17

2.3.3
Pros and cons of table-driven routing protocols
20

2.4
On-Demand Routing Protocols
20
2.4.1
DSR
21

2.4.2
AODV
24

2.4.3
Comparison of DSR and AODV
27

2.4.4
Pros and Cons of Reactive Routing Protocols
28

2.5
Hybrid Routing Protocols
29

2.5.1
ZRP
29

2.5.2
Pros and cons of hybrid routing protocols
30

2.6
Summary
31

3.
SECURITY IN MANETs

3.1
Issues and Challenges in Designing Secure Protocols
32

3.2
Secure Routing in MANETs

34

3.2.1
Attacks and Exploits on the Existing Routing Protocols
35

3.2.2
SEAD
41

3.2.3
ARIADNE
42

3.2.4
ARAN
44

3.2.5
SRP
46

3.3
Certificate-based Authentication in MANETs
48

3.3.1
Problem definition
49

3.3.2
Requirements
50

3.3.3
Survey of related work
52

3.3.4
Comparison of the Mechanisms
58

3.3.5
Metrics for Evaluation
59

3.4
Summary
61
4.
SIMULATION STUDY OF PERFORMANCE IN MANETs

4.1
Introduction
62

4.2
The ns-2 Network Simulator
63

4.2.1
Wireless Support
64

4.2.2
Other add-on utilities
64

4.2.3
Advantages and disadvantages
66

4.3
Mobility Modeling
66

4.3.1
Entity Mobility Models
67

4.3.2
Group Mobility Models
69

4.4
Scenario-based Experiments for Performance Evaluation

Of MANET routing protocols
70

4.4.1
Performance evaluation of AODV in a battlefield scenario
70

4.4.2
Experimental Setup and Metrics
71

4.4.3
Results
75

4.4.4
Conclusion
81

4.5
Summary
82
5.
SCENARIO BASED PERFORMANCE EVALUATION OF SECURE ROUTING IN MANETs

5.1
Introduction
83

5.2
Experimental Setup
85

5.3
Issues Faced
86

5.3.1
SEAD source code version compatibility
86

5.3.2
Bug in Java-based trace file Parser
87

5.4
The Scenarios
88

5.4.1
The Battlefield Scenario
88

5.4.2
The Rescue Operation Scenario
89

5.4.3
The Event Coverage Scenario
90

5.5
Results
91

5.5.1. Impact on the Packet Delivery Fraction (PDF)
91

5.5.2
Impact on the Normalized Routing Load (NRL)
93

5.5.3
Impact on the Average End-to-end Delay (AED)
96

5.6
Summary
 98
6.
CONCLUSION AND FUTURE WORK
100

APPENDIX

A
Glossary of Terms
103
B

Tutorial for Performance Analysis of MANET

Routing Protocols using ns-2
104
C

Source Code Listings
114
REFERENCES
137

LIST OF TABLES

2.1
Routing table for node 1
16

2.2
Modified routing table for node 1
17

2.3
Comparison of the features of DSR and AODV
27

3.1
Comparison of the certificate-based authentication mechanisms

in MANETs
58

4.1
Traffic pattern
71

4.2
Parameters for the battlefield scenario
72

4.3
Effect of varying the number of nodes
74

4.4
Effect of varying the pause time
76

4.5
Effect of varying the average number of nodes
79

5.1
Traffic pattern for the scenarios
85

5.2
Parameters for the battlefield scenario
89

5.3
Parameters for the rescue operation scenario
90

5.4
Parameters for the event coverage scenario
90

LIST OF FIGURES

1.1
Wireless LAN
2
1.2
A Cellular network
3

1.3
A Mobile ad hoc network
5

2.1
The Hidden Terminal Problem
11

2.2
The Exposed Terminal Problem
12

2.3
Classification of MANET routing protocols
13

2.4
Topology graph of the network
15

2.5
Topology graph of the network when node 7 moves
16

2.6
The count-to-infinity problem
19

2.7
Route Discovery in DSR
22

2.8
Route Maintenance in DSR
23

2.9
Route discovery in AODV
25

2.10
Route Maintenance in AODV
27

2.11
Routing zone and zone radius
30

3.1
Centralized authentication scheme in Wireless LANs
33

3.2
Classification of attacks on MANET routing protocols
36

3.3
Example of MANET with a malicious node
37

3.4
Formation of loops by spoofing
38

3.5
Wormhole attack
40

3.6
The SRP header for route request packet
46

3.7
Ku (Kv, certificate issued to v by u
53

4.1
ns-2 over Cygwin
63

4.2
Screenshot of Nam window
66

4.3
Effect of varying the number of nodes on the pause time
74

4.4
Effect of varying the number of nodes on the Average end-end delay
75

4.5
Effect of varying the number of nodes on the Normalized Routing Load
75

4.6
Effect of varying the pause time on PDF
77

4.7
Effect of varying the pause time on average end to end delay
77

4.8
Effect of varying the pause time on NRL
78

4.9
Effect of varying the average number of nodes on PDF
79

4.10
Effect of varying the average number of nodes on the AED
80

4.11
Effect of varying the average number of nodes on the NRL
81

5.1
Screenshot of Active File Compare
87

5.2
Pause time Vs PDF for battlefield scenario
92

5.3
Update Frequency Vs PDF for event coverage scenario
92

5.4
Pause time Vs PDF for rescue operation
93

5.5
Pause time Vs NRL for battlefield scenario
96

5.6
Update frequency Vs NRL for event coverage scenario
95

5.7
Pause time Vs NRL for rescue operation scenario
95

5.8
Pause Time Vs AED for battlefield scenario
96

5.9
Update frequency Vs AED for event coverage scenario
97

5.10
Pause time Vs AED for rescue operation
97

CHAPTER 1: INTRODUCTION

Over the past decade, there has been a growing interest in wireless networks, as the cost of mobile devices such as PDAs, laptops, cellular phones, etc have reduced drastically. The latest trend in wireless networks is towards pervasive and ubiquitous computing - catering to both nomadic and fixed users, anytime and anywhere. Several standards for wireless networks have emerged in order to address the needs of both industrial and individual users. One of the most prevalent forms of wireless networks in use today is the Wireless Local Area Network (WLAN). In such a network, a set of mobile nodes are connected to a fixed wired backbone. WLANs have a short range and are usually deployed in places such universities, companies, cafeterias, etc. However, there is still a need for communication in several scenarios of deployment where it is not feasible to deploy fixed wireless access points due to physical constraints of the medium. For example, consider communication amongst soldiers in a battlefield, involving troops spread out over a large area. In this case, it is not only feasible to deploy a fixed wireless access point, but also risky since an enemy attack would bring down the whole network. This problem has led to a growing interest among the research community in mobile ad hoc networks, wireless networks comprised of mobile computing devices communicating without any fixed infrastructure. The rest of this chapter is organized as follows – initially a classification of wireless networks in use today is described followed by the background and origins of ad hoc wireless networks. The general issues in ad hoc wireless networks are then discussed, followed by a few interesting applications. The final section gives an outline of the chapters to follow.

1.1
Taxonomy of Wireless Networks

A wireless network in general consists of a set of mobile hosts which communicate to other mobile hosts either directly or via an access point (base station). The following is a broad classification of wireless networks-

1.1.1
Wireless LANs and PANs

A Wireless Local Area Network (WLAN) consists of a set of mobile users communicating via a fixed base station or an access point. The mobile node can be any device such as a palmtop, PDA, laptop etc. as shown in Figure 1.1.

[image: image53.wmf]1

)

1

(

)

1

(

2

1

-

-

+

-

+

=

-

n

x

Sn

n

s

s

S

a

a

a

Figure 1.1: Wireless LAN

Such networks are usually deployed in offices, cafeterias, universities, etc. and are most prevalently used nowadays. There are three types of WLANs – Independent Basic Service Set (IBSS), Basic Service Set (BSS) and Extended Service Set (ESS). A detailed classification is beyond the scope of this thesis. IEEE 802.11 is an adopted international standard for wireless LANs which provides transmission speeds ranging from 1 Mbps to 54 Mbps in either the 2.4 GHz or 5 GHz frequency bands. The latest version of this standard in use today is IEEE 802.11g which provides a bandwidth of up to 54 Mbps.

A Wireless Personal Area Network (WPAN) consists of personal devices which communicate without any established infrastructure. The IEEE 802.15.1 standard for Wireless Personal Area Networks, also called popularly as the Bluetooth is currently being used for short range communication such as in digital cameras, PDAs, laptops, etc.

1.1.2
Wireless WANs and MANs

Nowadays, the trend is towards a wireless internet consisting of mobile nodes accessing the internet without the help of any backbone network. This type of network is based on the cellular architecture in which a large area to be covered is divided in to several cells, each having a fixed base station. Each cell consists of several mobile terminals (MT) which communicate to other mobile terminals in a same cell through the base station as shown in Figure1.2.

[image: image2.emf]MT

MT

MT

BS

BS

BS

Figure 1.2: A Cellular network

The communication between nodes in different cells is carried on by a procedure called handoff which involves communication between the base stations in the two cells. Cellular networks have constantly evolved from the First Generation Cellular Systems (1G) to the Third Generation Systems (3G). Today, most wireless data communication takes place across 2G cellular systems such as TDMA, CDMA, PDC, and GSM, or through packet-data technology over old analog systems such as CDPD overlay on AMPS [1]. Although traditional analog networks, having been designed for voice rather than data transfer, have some inherent problems, some 2G (second generation) and new 3G (third generation) digital cellular networks are fully integrated for data/voice transmission. With the advent of 3G networks, transfer speeds should also increase greatly.

Wireless Metropolitan Area Networks (WMANs) are networks that typically span several kilometers and cover large parts of cities. The IEEE 802.16 which is based on the OSI model is a standard used for such types of networks. It is mostly used for real time data and multimedia applications such as digital video and telephony.

Wireless WANs, which can bridge branch offices of a company, cover a much more extensive area than wireless LANs. In wireless WANs, communication occurs predominantly through the use of radio signals over analog, digital cellular, or PCS networks, although signal transmission through microwaves and other electromagnetic waves is also possible.

1.1.3
 Mobile Ad hoc and Sensor Networks

Mobile Ad hoc networks or MANETs are the category of wireless networks which do not require any fixed infrastructure or base stations. They can be easily deployed in places where it is difficult to setup any wired infrastructure. As shown in Figure.1.3, there are no base stations and every node must co-operate in forwarding packets in the network.

[image: image1.emf]Ethernet

Laptop

Tablet PC

`

`

Laptop

Access Point

WorkstationWorkstation

Server

PDA

[image: image3.emf]Mobile Node

Thus, each node acts as a router which makes routing complex when compared to Wireless LANs, where the central access point acts as the router between the nodes.

A sensor network is a special category of ad hoc wireless networks which consists of several sensors deployed without any fixed infrastructure. The difference between sensor networks and ordinary ad hoc wireless is that the sensor nodes may not be necessarily mobile. Further, the number of nodes is much higher than in ordinary ad hoc networks. The nodes have more stringent power requirements since they operate in harsh environmental conditions. An example of a sensor network is a set of nodes monitoring the temperature of boilers in a thermal plant. Other application domains include military, homeland security and medical care.

1.2
 Advantages of Mobile Ad hoc Networks

Having discussed the general issues in MANETs, the reason behind their popularity and their benefits will now be discussed.

(a) Low cost of deployment: As the name suggests, ad hoc networks can be deployed on the fly, thus requiring no expensive infrastructure such as copper wires, data cables, etc.

(b) Fast deployment: When compared to WLANs, ad hoc networks are very convenient and easy to deploy requiring less manual intervention since there are no cables involved.

(c) Dynamic Configuration: Ad hoc network configuration can change dynamically with time. For the many scenarios such as data sharing in classrooms, etc., this is a useful feature. When compared to configurability of LANs, it is very easy to change the network topology.
1.3
Applications of Mobile Ad hoc Networks

 Ad hoc networks have several interesting applications ranging from battlefield to class rooms. In this section, some scenarios of deployment are discussed.

(a) Battlefield: In a battlefield, communication between soldiers and vehicles can be carried out using ad hoc networks. In such networks, the soldier troops might communicate with each other using hand-held devices. The vehicle mounted devices can be equipped with power sources for “recharging” these mobile devices.

(b) Rescue Operation: In scenarios such as fire fighting or avalanche rescue operations, a quick deployment of nodes is required. Ad hoc networks can be used in such scenarios for communication between the workers.

(c) Event Coverage: Scenarios such as a press conference might entail reporters to share data amongst other reporters. In such cases, multimedia traffic might be exchanged between nodes such as laptops, PDAs, etc.

(d) Classroom: In a classroom, students and instructors can set up an ad hoc wireless network to share data using laptops.

1.4
General Issues in Mobile Ad hoc Networks

In a mobile ad hoc network, all the nodes co-operate amongst each other to forward the packets in the network and hence, each node is effectively a router. Thus one of the most important issues is routing. This thesis focuses mainly on routing issues in ad hoc networks. In this section, some of the other issues in ad hoc networks are described.

(a) Distributed network: A MANET can be considered as a distributed wireless network without any fixed infrastructure. By distributed, it is meant that there is no centralized server to maintain the state of the clients, similar to peer-to-peer (P2P) networks.

(b) Dynamic topology: The nodes are mobile and hence the network is self-organizing. Due to this, the topology of the network keeps changing with time. Hence the routing protocols designed for such networks must also be adaptive to the changes in the topology.

(c) Power awareness: Since the nodes in an ad hoc network typically run on batteries and deployed in hostile terrains, they have stringent power requirements. This implies that the underlying protocols must be designed to conserve battery life, or in other words, they must be power aware.

(d) Addressing scheme: The network topology keeps changing dynamically and hence the addressing scheme used is quite significant. A dynamic network topology entails a ubiquitous addressing scheme, which avoids any duplicate addresses. Mobile IP is currently being used in cellular networks where a base station handles all the node addressing. However, such a scheme doesn’t apply to ad hoc networks due to their decentralized nature.
(e) Network size: Commercial applications of ad hoc networks such as data sharing in conference halls, meetings, etc. are an attractive feature of ad hoc networks. However, the delay involved in the underlying protocols places a strict upper bound on the size of the network.
(f) Security: Security in an ad hoc network is of prime importance in scenarios of deployment such as battlefield. The three goals of security - confidentiality, integrity and authenticity are very difficult to achieve since every node in the network participates equally in the network. Security issues in MANETs are discussed in chapter-3.
1.5
Thesis Outline

The thesis comprises of 6 chapters. Chapter 2 discusses the general routing issues in MANETs and classifies the routing protocols. The working description of a few table driven/proactive and reactive protocols is provided. It is followed by a summary and comparison of their features.

Chapter 3 discusses security issues in MANETs with a focus on secure routing in MANETs. Initially it focuses on the attacks and threats that are possible in an ad hoc wireless network. It explains the working mechanism of four of the state-of-the-art routing protocols SEAD, ARIADNE, ARAN and SRP. It also compares these routing protocols with respect to their features. A study of certificate-based authentication mechanisms follows, where the requirements are identified and a brief description of four of them is provided. A comparison of the mechanisms is done with respect to these requirements.

Chapter 4 discusses the simulation approach to study of performance in MANETs. A brief description of the ns-2 simulator environment is provided. Further, it discusses mobility modeling for MANETs. At the end, a tutorial is provided for the novice users researching on performance issues in MANETs.

Chapter 5 forms the crux of this thesis and discusses the experiments carried out to analyze the performance of SEAD. The scenarios, metrics and the issues faced are explained. The experimental results and their analyses follow.

Chapter 6 concludes this thesis along with pointers to future work in the area of mobile ad hoc networks.

CHAPTER 2: ROUTING IN MANETs

Unlike wired networks, routing in MANETs poses unique challenges. Designers of routing protocols for MANETs need to address several issues. In this chapter these issues are identified and the routing protocols available for MANETs are classified. Then working principle of a few protocols such as DSDV, DSR, AODV, etc. are explained. Their pros and cons are also identified. This chapter concludes with a summary of routing in MANETs.

2.1
Design Issues

The following design issues must be considered before designing a routing protocol for MANETs [1]-

(a) Dynamic Topology: In a MANET, the network topology keeps changing with time due to the movement of the nodes, and hence the links between the nodes suffers frequent breaks. Thus the ordinary routing protocols for wired networks are not efficient since they are designed for static networks.

(b) Bandwidth constraint: The nodes in the network have a relatively low bandwidth when compared to traditional wired networks. This is an important issue to consider when designing routing protocols for MANETs since the utilization of bandwidth by the routing protocol in the network must be minimized.

(c) Error prone broadcast channel: The nodes in the MANET broadcast the information to all the neighboring nodes on the wireless channel. The channel itself is prone to several errors such as attenuation, multi-path fading, etc. Thus the routing protocol itself must be designed taking into consideration these issues.

(d) Hidden and exposed terminal Problems: The hidden terminal problem is shown in Figure 2.1.

[image: image4.emf]A

B

C

A transmits data to B but C doesn’t hear it

A

B

C

C transmits to B -Collision

Figure 2.1: The Hidden Terminal Problem

This problem occurs in networks using contention based protocols such as ALOHA, CSMA/CD, etc. When two nodes which are out of range of each other send data frames to a node which is within their respective radio ranges, a collision of data frames occurs. As shown in Figure.2.1, when both nodes A and C transmit data frames to node B a collision occurs. This problem can be resolved by using a mechanism called RTS/CTS handshake [2].

The exposed node problem is shown in Figure.2.2. An exposed node is one which is in the range of the transmitter, but out of the range of the receiver. In Figure.2.2, when node C is transmitting to node D, B overhears this and is blocked. Now if node B wants to transmit to node A, it cannot do so.

[image: image5.emf]A

BCD

Figure 2.2: The Exposed Terminal Problem

This results in wasted bandwidth. The hidden and exposed terminal problems occur at the MAC layer and prevent successful transmission of data packets. This, in turn also affects the design of the routing protocol. In order to prevent this, the routing protocol must reduce the number of broadcast packets to minimize collisions.

(e) Resource limitations: As discussed in chapter 1, MANETs consist of nodes such as PDA, laptops, etc. which have stringent power requirements. Further, some of these devices have limited processing power. Thus the routing protocols must be efficient in terms of power conservation.

(f) QoS limitations: For applications such as multimedia, QoS guarantees must be provided by the routing protocol. However, such guarantees come at the cost of higher latency and poor performance since multimedia applications require higher bandwidth and traffic rates.

(g) Security: Due to on open environment where MANETs are typically deployed, the routing protocols are prone to several attacks. Further, there is also the issue of secure key distribution. This issue will be further explored further when secure routing is discussed in Chapter-4.

2.2
Classification of the Routing Protocols

Several routing protocols have been proposed for ad hoc networks. In this section a broad classification of these routing protocols is given. Only the unicast routing protocols are considered and an in-depth classification of all available protocols is beyond the scope of this thesis. Figure 2.3 shows the classification of the routing protocols for MANETs. At one end are the table-driven or proactive routing protocols such as the Destination Sequenced Distance Vector (DSDV) routing protocol, Wireless Routing Protocol (WRP), etc. At the other end, are the on-demand or reactive protocols such as Dynamic Source Routing (DSR) protocol and the Ad hoc On-demand Distance Vector (AODV) routing protocols. Each of these types of protocols is discussed in more detail.

[image: image6.emf]MANET Routing

Protocols

Table driven/

Proactive

Hybrid

On-Demand Driven/

Reactive

DSDV

WRP

CGSR

.....

ZRP

DSR

AODV

TORA

....

Figure 2.3: Classification of MANET routing protocols

2.3
Table-driven/Proactive Routing Protocols

In table-driven or proactive protocols, the nodes maintain an active list of routes to every other node in the network in a routing table. The tables are periodically updated by broadcasting information to other nodes in the network. Thus, they are an extension to the wired network routing protocols such as the Routing Internet Protocol (RIP). Any node wishing to communicate with another node has to obtain the next hop neighbor on the route to the destination from its routing table. Some examples of table-driven routing protocols are Destination Sequenced Distance-Vector routing protocol (DSDV) [3], Wireless Routing Protocol (WRP) [4], Cluster Switch Gateway Routing protocol (CGSR) [5], etc. In the following sections, working of DSDV and WRP are explained, and the general pros and cons of table-driven routing protocols are enumerated.

2.3.1
Destination Sequenced Distance Vector (DSDV) Routing Protocol

The Destination Sequenced Distance Vector (DSDV) protocol is a proactive routing protocol based upon the distributed Bellman Ford algorithm [6]. In this routing protocol, each mobile host maintains a table consisting of the next-hop neighbor and the distance to the destination in terms of number of hops. It uses sequence numbers for the destination nodes to determine “freshness” of a particular route, in order to avoid any short or long-lived routing loops. If two routes have the same sequence number, the one with smaller distance metric is advertised. The sequence number is incremented upon every update sent by the host. All the hosts periodically broadcast their tables to their neighboring nodes in order to maintain an updated view of the network. The tables can be updated in two ways – either incrementally or through a full dump. An incremental update is done when the node doesn’t observe any major changes in the network topology. A full dump is done when network topology changes significantly or when an incremental update requires more than one NPDU (Network Packet Data Unit).

Let us consider an example to understand the routing mechanism better. Consider the network topology shown in figure 2.4. The routing table for this network is shown in table 2.1. As shown in the table, each node maintains a route to every other node in the network during the route establishment phase. Whenever there is a link break in the network, the end node of the broken link propagates a routing table update message with the broken link’s weight assigned to infinity. This message is broadcasted by every node to its neighbors. A broken link is denoted by an odd sequence number and an ordinary link by an even sequence number. When node 1 wants to send data to node 7, it checks the next hop neighbor for node 7, which is 2 and passes the data packet to it.

[image: image7.emf]1

5

4

6

3

7

2

Source node

Destination Node

Figure 2.4: Topology graph of the network

	Destination
	Next hop
	Metric
	Sequence number

	1
	-
	0
	S40_1

	2
	2
	1
	S340_2

	3
	3
	1
	S22_3

	4
	4
	1
	S334_4

	5
	2
	2
	S76_5

	6
	3
	2
	S84_6

	7
	2
	3
	S94_7

Table 2.1: Routing table for node 1

Figure 2.5 shows the case when node 7 moves out of range of nodes 6 and 5. Thus the link 6-7 and 7-5 are broken and the routing table at 1 is now reorganized as shown in Table 2.2. When node 4 hears the update request from node 7 with a higher sequence number, it broadcasts this information to all nodes. This eventually reaches node 1 which changes the next hop, metric and the sequence number entry in routing table for 7.

[image: image8.emf]1

5

4

6

3

7

2

Source node

7

Node 7 moves

Broken link

Figure 2.5: Topology graph of the network when node 7 moves

	Destination
	Next hop
	Metric
	Sequence number

	1
	-
	0
	S40_1

	2
	2
	1
	S340_2

	3
	3
	1
	S22_3

	4
	4
	1
	S334_4

	5
	2
	2
	S76_5

	6
	3
	2
	S84_6

	7
	4
	2
	S98_7

Table 2.2: Modified routing table for node 1

DSDV guarantees loop free routes to each destination and also finds the optimal path. It uses an average settling delay to prevent frequent routing table updates and any fluctuations caused by two similar routing advertisements which are in an incorrect order of the sequence numbers.

2.3.2
Wireless Routing Protocol (WRP)

The Wireless Routing protocol (WRP) [4] is a table-driven protocol based upon the distributed Bellman Ford algorithm and is similar to DSDV. The difference between DSDV and WRP is the number of tables maintained at each node. In WRP, the following tables maintained at each node-

a. Routing table (RT): It is used for maintaining an up-to-date view of the network for all the destinations. It consists of the destination node, the predecessor node (penultimate node), the successor node (the next hop neighbor) and a flag to indicate status of the path.

b. Link Cost Table (LCT): This table stores the cost (no. of hops to reach the destination) of relaying messages through each link. The cost of a broken link is taken as infinity. It also stores the number of update periods passed since the last successful update was received from that link. This is done to detect link breaks.

c. Distance Table (DT): This table stores the number of hops between a node and its destination.

d. Message Retransmission List (MRL): The MRL contains an entry for every update message retransmitted and has a counter for each entry which is retransmitted after the message is sent. Other fields are an acknowledgement flag and a list of messages in each update.

Every node periodically sends an update message to its neighbors, which contains a list of updates and a list of responses indicating which node must acknowledge the update. When a node detects a link break, it sends an update message to its neighbors with the link cost of the broken link set to infinity. All the nodes which had an active route to the nodes affected by the link break then update their corresponding entries to them. By storing the predecessor node information and forcing every node to check if the information is correct, WRP avoids the count to infinity problem which is described below-

2.3.2.1
The Count-to-infinity Problem

DSDV and WRP are based upon the distributed Bellman-Ford algorithm, which suffers from the count-to-infinity problem shown in figures 2.6 (a) and (b) [7]. Consider four nodes A, B, C and D in the network. The routing tables for B, C and D initially contain the metrics (number of hops) 1, 2 and 3 respectively for the destination node A as shown in figure 2.6(a).

Consider the situation when the link between A and B is broken as shown by red dotted and dashed lines in figure 2.6 (b). B knows about this, but it sees a route to A with two hops from the routing table of C (C-B-A) thus it increments the metric in its own table to 3 (denoting the route B-C-B-A). When C sees that its next hop neighbor B has incremented it’s metric, it is also forced to increment its metric by 1 more than B. Similarly D follows. In this way, there’s a situation where an infinite number of updates leading to destabilization of the whole network.

[image: image52.wmf]1

)

1

(

)

1

(

2

1

-

-

+

-

+

=

-

n

x

Sn

n

s

s

S

a

a

a

[image: image9.emf]A

B

C

D

1

1

1

BCD

123

Number of hops to node A

A

B

C

D

1

1

1

BCD

323

Number of hops to node A

BCD

343

BCD

545

....

Figure.2.6: The count-to-infinity problem

WRP has a faster convergence than DSDV and also reduces the number of routing table updates required. However, the overhead of maintaining the four tables is very high.

2.3.3
Pros and Cons of Table-driven Routing protocols

One of the main benefits of table-driven routing protocols is that the routing information to any node is available at all times since routes to all the nodes are stored in the routing table. But this also means that the routing tables may contain routes to destinations which are not required. Due to this, there is more memory consumption at each node as the size of the network increases. Further, it has been found that table-driven protocols such as DSDV fail to converge at higher mobility rates of the nodes. This issue will be explored further in Chapter 4, where the simulation study of performance in MANETs is explained.

2.4
On-Demand/Reactive Routing Protocols

In contrast to table driven routing protocols, on-demand routing protocols find route to a destination only when it is required. The on-demand protocols have two phases in common – route discovery and route maintenance. In the route discovery procedure, a node wishing to communicate with another node initiates a discovery mechanism if it doesn’t have the route already in its cache. The destination node replies with a valid route. The route maintenance phase involves checking for broken links in the network and updating the routing tables. The working of a few reactive routing protocols is now described.

2.4.1 Dynamic Source Routing (DSR) Protocol

The Dynamic Source Routing Protocol [8] is an on-demand routing protocol which is based on the concept of source routing. In source routing, a sender node specifies in the packet header, the complete list of nodes that the packet must traverse to reach the destination node. This essentially means that every node just needs to forward the packet to its next hop specified in the header and need not check its routing table as in table-driven routing protocols. Furthermore, the nodes don’t have to periodically broadcast their routing tables to neighboring nodes. The DSR protocol works in two phases as described below-

2.4.1.1
Route Discovery:

In the route discovery phase, the source node establishes a route by broadcasting route request (RREQ) packets to all its neighbors. Each neighboring node, in turn rebroadcasts the packets to its neighbors if it has not already done so, or if it is not the destination node, provided that the TTL (Time To Live) counter is greater than zero. Further, request ids are used to determine if a particular route request has been previously received by the node. Each node maintains a list of recently received <initiator, request id> pairs. If two route requests with the same <initiator, request id> are received by a forwarding node, it broadcasts only one of them and drops the other. This also prevents formation of routing loops in the network. When the packet reaches the destination node, it unicasts a reply packet (RREP) on the reverse path back to sender. This reply packet contains the route to that destination. Figure 2.7 shows an example of the route discovery mechanism. When node 1 wants to communicate with node 7, it initiates a route discovery mechanism and broadcasts request packet RREQ to its neighboring nodes 2, 3 and 4 as shown. However, node 3 also receives the broadcast packets from nodes 4 and 2 with the same <initiator, request id> pair. It drops both of them and broadcasts the other packet to its neighbors. The other nodes follow the same procedure. When the packet reaches node 7, it inserts its own address and reverses the route in the record and unicasts it back on the reverse path to the destination.

The destination node unicasts the best route (received first) and caches the other routes for future. A route cache is maintained at every node so that, whenever a node receives a route request and finds a route for the destination node in its own cache, it sends a RREP packet itself without broadcasting it further.

[image: image10.emf]1

5

4

6

3

7

2

Source node

Destination Node

Network link

RREQ

RREP

Duplicate packets

Figure 2.7: Route Discovery in DSR

2.4.1.2
Route Maintenance:

The route maintenance phase is carried out whenever there is a broken link between two nodes. A failed link can be detected by a node by either passively monitoring in promiscuous mode or actively monitoring the link. As shown in Figure 2.8, when an intermediate node in the path moves away, causing a wireless link to break (6-7), a route error packet (RERR) is sent by the intermediate node back to the originating node. The source node re-initiates the route discovery procedure to find a new route to the destination. It also removes any route entries it may have in its cache to the destination node.

[image: image11.emf]1

5

4

6

3

7

2

Source node

Destination Node

Selected Route

Broken Link

Route Error (RERR)

Figure 2.8: Route Maintenance in DSR

DSR benefits from source routing since the intermediate nodes need not maintain up-to-date routing information in order to route the packets that they forward. There is also no need for any periodic routing advertisement messages. However, as size of the network increases, the routing overhead increases since each packet has to carry the entire route to the destination with it. The use of route caches is a good mechanism to reduce the propagation delay but overuse of the cache may result in poor performance [8]. The disadvantage of DSR is that whenever there is a link break, the RERR packet propagates to the original source, which in turn initiates a new route discovery process. Thus the link is not repaired locally. Several Optimizations to DSR are possible such as non- propagating route requests (when sending RREQ, nodes set the hop limit to one preventing them from re-broadcasting), gratuitous route replies (when a node over hears a packet with its own address listed in the header, it sends a RREP to the originating node bypassing the preceding hops), etc. A detailed explanation of DSR optimizations can be found in [8].

2.4.2 Ad hoc On-demand Distance Vector (AODV) Routing Protocol

The Ad hoc On-demand Distance Vector routing protocol [9] inherits the good features of both DSDV and DSR. The AODV routing protocol uses a reactive approach to finding routes and a proactive approach for identifying the most recent path. More specifically, it finds routes using the route discovery process similar to DSR and uses destination sequence numbers to compute fresh routes. The two phases are discussed in more detail-

2.4.2.1 Route Discovery

During the route discovery process, the source node broadcasts RREQ packets similar to DSR. The RREQ packet contains the source identifier (SId), the destination identifier (DId), the source sequence number (SSeq), the destination sequence number (DSeq), the broadcast identifier (BId) and TTL fields. When an intermediate node receives a RREQ packet, it either forwards it or prepares a Route Reply (RREP) packet if it has a valid route to the destination in its cache. The (SId, BId) pair is used to determine if a particular RREQ has already been received in order to eliminate duplicates. Every intermediate node enters the previous node’s address and its BId while forwarding a RREQ packet. The node also maintains a timer associated with every entry in order to delete a RREQ packet if the reply is not received before it expires.

Whenever a RREP packet is received by a node, it stores the information of the previous node in order to forward the packet to it as the next hop towards the destination. This acts as a “forward pointer” to the destination node. Thus each node maintains only the next hop information unlike source routing in which all the intermediate nodes on the route towards the destination are stored.

Figure 2.9 shows an example of route discovery mechanism in AODV. Let us suppose that node 1 wants to send a data packet to node 7 but it doesn’t have a route in its cache. Then it initiates a route discovery process by broadcasting a RREQ packet to all its neighboring nodes.

[image: image12.emf]1

5

4

6

3

7

2

Source node

Destination Node

Route Request (RREQ)

Route Reply (RREP)

Route cache : 6-7

Figure 2.9: Route discovery in AODV

It inserts the SId, DId, SSeq, DSeq, BId, and TTL fields in the RREQ packet. When nodes 4, 3 and 2 receive this, they check their route caches to see if they already have a route. If they don’t have a route, they forward it to their neighbors, else the destination sequence number DSeq in the RREQ packet is compared with the DSeq in its corresponding entry in route cache. If the DSeq in RREQ packet is greater, then it replies to the source node with a RREP packet containing the route to the destination. In figure 2.9, node 3 has a route to 7 in its cache and its DSeq is higher compared to that in RREQ packet. So, it sends a RREP back to the source node 1. Thus the path 1-3-6-7 is stored in node 1. The destination node also sends a RREP back to the source. For example, one possible route is 1-2-5-7. The intermediate nodes on the path from source to destination update their routing tables with the latest DSeq in the RREP packet.

2.4.2.2 Route Maintenance

The route maintenance mechanism works as follows – Whenever a node detects a link break by link layer acknowledgements or HELLO beacons [2], the source and end nodes are notified by propagating an RERR packet similar to DSR. This is shown in Figure 2.10. If the link between nodes 3 and 5 breaks on the path 1-3-5-7, then both 5 and 3 will send RERR packets to notify the source and destination nodes.

One optimization possible in AODV route maintenance is to use an expanding ring search to control the flood of RREQ and discover routes to unknown destinations [10]. The main advantage of AODV is that it avoids source routing thereby reducing the routing overload in large networks. Further, it also provides destination sequence numbers which allows the nodes to have more up-to-date routes. However, AODV requires bidirectional links and periodic link layer acknowledgements to detect broken links. Further, it has to maintain routing tables for route maintenance unlike DSR.

[image: image13.emf]1

5

4

6

3

7

2

Source node

Destination Node

Route from 1-7

Route Error (RERR)

Route cache : 6-7

Broken Link

Figure 2.10: Route Maintenance in AODV

2.4.3
Comparison of DSR and AODV

Table 2.3 provides a comparison of the features of DSR and AODV:

	 Protocol

Feature
	DSR
	AODV

	Destination sequence numbers
	Not used
	Used

	Link Layer acknowledgements
	Not Required
	Required (using HELLO beacons) for link breakage detection

	Routing mechanism
	Source routing – Multiple route caches for each destination
	Table driven – one entry per destination. Sequence numbers used for

	Route storage mechanism
	Using route caches
	Using routing tables

	Timers
	Not Used
	Used

	Multiple Route caches
	Yes
	No

	Optimizations
	Salvaging, Gratuitous route replies (RREP) and Route Error (RERR), non-propagating route requests [11]
	Expanding ring search [10]

Table 2.3: Comparison of the features of DSR and AODV

The main difference is the source routing employed by DSR in contrast to table-driven routing used by AODV. Due to this, DSR has a higher routing load when the size of the network increases since each packet header has typically more information when compared to AODV. Another important difference is that AODV requires link layer acknowledgements or HELLO beacons at periodic intervals in order to detect link breaks. However, DSR avoids this feature and hence more efficient. Further, DSR stores multiple route caches for a destination whereas AODV does not. It has been found that this has an impact on the end-to-end delay and the delivery fraction as the size of the network increases [10]. DSR has been found to perform well in lightly loaded networks, whereas AODV performs well in more stressful networks (with higher density of nodes). AODV also benefits from its timer mechanisms by maintaining fresher route entries as compared to DSR, which doesn’t implement any timers. Besides, in DSR all requests reaching a destination node are replied to, whereas in AODV the destination replies only once to the request arriving first and ignores others.

2.4.3 Pros and Cons of Reactive Routing Protocols

The main advantage of proactive routing protocols is that periodic routing updates are not required. Thus the number of routing packets in the network is reduced thereby decreasing the load on the network. Further, link breakages are detected by a route maintenance mechanism only when needed in contrast to table driven protocols which maintain updated routes by propagating periodic updates. In general, on demand routing protocols have found to perform better under higher mobility rates of nodes and exhibit low latency in moderate to large networks [10].

2.5
Hybrid Routing Protocols

Hybrid routing protocols inherit the characteristics of both on-demand and table-driven routing protocols. Such protocols are designed to minimize the control overhead of both proactive and reactive routing protocols. The working of hybrid routing protocols is illustrated with an example – the Zone Routing Protocol (ZRP).

2.5.1
Zone Routing Protocol (ZRP)

The Zone Routing Protocol [12] is a hybrid protocol which combines the best features of both reactive and proactive routing protocols. The protocol itself consists of four components: (i) the Intra Zone Routing Protocol (IARP) (ii) the reactive Inter zone Routing Protocol (IERP), and (iii) Border cast Resolution Protocol (BRP). The working principle of ZRP is as follows.

The whole network is effectively divided into zones, where each zone represents a small part of the network. Every node in the zone maintains a routing table having an entry for every other node in its zone. It also specifies a zone radius which represents the maximum number of hops to reach the farthest node in the zone. Within a zone, the routing is done by a table-driven mechanism using the IARP protocol. A node can belong to more than one zone. Figure 2.11 depicts the concept of routing zone and zone radius. The nodes within a zone exchange periodic route updates. Between zones, the communication occurs using the IERP, in which a node wishing to communicate with a node in a different zone sends a route request packet to all nodes on the border of the zone. For example, in Figure 2.11 if node 2 wishes to communicate with node 7, it will send request packets to nodes 1, 3 and 5.

[image: image14.emf]1

5

4

6

3

7

2

Routing zone of radius 1 for

node 2

Figure 2.11: Routing zone and zone radius

To find the border node, the BRP is used. If a border node finds the route entry to the destination node in its intra zone routing table, then it sends a reply packet directly to the source node, else it rebroadcasts the request to its peripheral nodes. The process continues until the destination node is reached, which unicasts a reply back to the source node with the route in its header. In case multiple route replies are received by the source, it selects the best route based on metrics such as number of hops, latency, etc.

If a node detects a broken link, a local path reconfiguration is carried out by selecting a shorter path connecting the ends of the broken link. The source node is notified of this new route.

2.5.1 Pros and Cons of Hybrid Routing Protocols

 The hybrid routing protocols inherit desirable features of both proactive and reactive routing protocols. Consequentially, the delay and overhead of route discovery is avoided since locally (for example, within a zone) the routes are available at all the times. It avoids periodic updates for nodes which are at a far distance by using a reactive approach thereby reducing the control overhead in large networks.

2.6 Summary

There have been several routing protocols which have been proposed for MANETs. In this chapter a broad classification of the routing protocols were given and the working principle of a few of them were described along with their pros and cons. The design issues that were identified in section 2.1 such as dynamic topology, bandwidth constraint, etc. are not satisfied by a single protocol. Instead, a routing protocol must be tailored to suit a particular scenario of deployment and the application for which it is used. For example, for a multimedia application such as streaming audio/video packet loss might be acceptable whereas it might require a strict upper bound on the latency. In order to gain an insight into the applicability of the protocol a scenario based performance analysis must be carried out. Chapter 4 delves into these issues.

CHAPTER 3: SECURITY IN MANETs

MANETs have certain unique characteristics that make them vulnerable to several types of attacks. Since they are deployed an open environment where all nodes co-operate in forwarding the packets in the network, malicious nodes are difficult to detect. Hence, it is quite difficult to design a secure protocol when compared to wired or infrastructure-based wireless networks. This section discusses some of the issues and challenges that a designer of secure protocols faces. These issues are analyzed with respect to the primary goals of a secure protocol – confidentiality, integrity and availability, authenticity and non-repudiation. The attacks and threats allowed by existing MANET routing protocols are then discussed. The working of a few secure routing protocols which address these threats such as SEAD, ARIADNE, ARAN and SRP is then described. The next section discusses another important issue in MANETs- certificate-based authentication. It surveys some mechanisms proposed and analyzes the requirements for effective certificate-based authentication in MANETs.

3.1 Challenges in Designing Secure Protocols

This section enumerates the issues and the challenges in designing secure protocols for MANETs [1].

(a) Shared broadcast radio channel: In MANETs, the radio channel is shared by all the nodes by broadcasting the data. Due to this, any malicious node can easily “snoop” over the data thereby violating confidentiality in the network. This can be minimized by using a directional antenna.

(b) Hostile environment: MANETs are typically deployed in hostile environments such as battlefield. In such cases, the nodes themselves are prone to attacks. Thus, not only must the protocol address attacks from outside a network, but also the attacks launched from within the network. Such internal attacks are severe and can violate all the goals of security.
(c) Decentralized architecture: In wired networks and wireless infrastructure-based networks (such as Wireless LANs), there is a fixed server which authenticates the users and handles key management. For example, a RADIUS server for authentication and a certificate server for key management may be installed as depicted in figure 3.1. Here, wireless station C1 sends its authentication credentials to the authenticator (Access Point B) using a protocol such as EAPOL, which in turn forwards the information to the back-end authentication server.

[image: image15]
Figure 3.1: Centralized authentication scheme in Wireless LANs

Such a centralized scheme is infeasible in an ad hoc network due to its distributed nature.

(d) Dynamic Topology: As discussed in general issues of ad hoc networks in chapter-1, the nodes in a MANET are highly dynamic in nature and hence the topology of the network keeps changing. Due to this the trust relationship between nodes also keeps changing. For example, if any malicious node is detected in a network, its relationship with the surrounding nodes changes. Due to this, the security protocol must also adapt to these changes.
(e) Power limitations: As discussed in section 1.2, nodes in a MANET are devices such as PDAs, laptops, etc. which run on batteries. The addition of security “layers” adds more performance overhead and also consumes network bandwidth. One of the severe implications of this is that nodes are easily vulnerable to attacks such as Denial of Service (DoS). Thus the security solution must also be power aware.
3.2 Secure Routing in MANETs

This thesis primarily focuses on the security issues from a network layer perspective. As discussed in chapter 2, several routing protocols for MANETs exist though none of them address the most important issue, namely, security. In order to study the attacks and threats, and to devise a protocol which addresses them, an understanding of the operating environment is needed.

The environment can be a managed environment, where a common trusted authority exists such as a RADIUS server or it can be an open environment where there is no a priori trust relationship between the nodes. For example in a battlefield, the nodes have a common trust authority which executes the key management functions. MANETs typically fall in to the open environment type since the nodes are mobile and they establish a connection dynamically. Another possible type of environment is the managed-open environment, where the nodes have already established some security infrastructure. This acts as a starting point for establishing the trust relationship between nodes. Several certificate based authentication mechanisms to be discussed in section 3.4 assume such an environment. Furthermore, the environment can be managed-hostile, which depicts scenarios such as military networks, where security is of prime importance.

Depending on these environments, several attacks and threats allowed by the existing routing protocols have been discovered. The existing routing protocols have been enhanced to address these attacks. The following sections discuss these in more detail:

3.2.1 Attacks and Exploits on the Existing Routing Protocols

The attacks on routing protocols can generally be classified as routing disruption attacks (attacker tries to disrupt the routing mechanism by routing packets in wrong paths) and resource consumption attacks (some non-cooperative or selfish nodes may try to inject false packets in order to consume network bandwidth). Both these attacks are examples of Denial of Service (DoS) attacks. Figure 3.2 depicts a broader the classification of the possible attacks in MANETs.

[image: image16.emf]Attacks on MANET routing protocols

Attacks using

Fabrication

Attacks using

impersonation

Attacks using

modification

·Redirection by

modified route

sequence numbers

·Redirection with

modified hop counts

·DoS with modified

source routes

·Tunneling

·Forming loops by

 spoofing

·Falsifying route

errors in AODV and

DSR

·Route cache

poisoning in DSR

Special Attacks

·Worm hole Attack

·Black hole attack

Figure 3.2: Classification of attacks on MANET routing protocols

Most of the attacks depicted are focused on the on-demand and reactive protocols such as AODV, DSR, etc. The following sections look at these attacks in more detail.

3.2.1.1 Attacks using Modification

In this type of attack, the protocol fields of the messages passed among the nodes is modified, thereby resulting in traffic subversion or Denial of Service (DoS) attacks. The following sections discuss some of these attacks-

(a) Redirection by modified route sequence numbers: This attack is possible against the AODV protocol. Consider the network shown in figure 3.3 [13]. If M is a malicious node that overhears the broadcast RREQ packet for the destination X originated by S, then it sends a false RREP packet with a longer route to X (adding itself to the list) and a greater destination sequence number than that last advertised by X. This will make S to route all its packets through M, since M advertises a fresher route to X.

[image: image17.emf]SABCDX

M

SABCDXM

Figure 3.3: Example of MANET with a malicious node [13]

(b) Redirection with modified hop count: This type of attack is targeted against the AODV protocol in which a malicious node can increase the chances that they are included on a newly created route by resetting the hop count field of a RREQ packet to zero.

(c) Denial of Service with modified source routes: This attack is possible against DSR which uses source routes and works as follows - in figure 3.3, assume that a shortest path exists from S to X. Also assume that C and X cannot hear each other, that nodes B and C cannot hear each other, and that M is a malicious node attempting a denial-of-service attack. Suppose S sends a data packet to X with the source route S-A-B-C-D-X. If M intercepts this packet, removes D from the list and forwards it to C, C will attempt to forward this packet to X which is not possible since C cannot hear X. Thus M has successfully launched a DoS attack on X.

3.2.1.2 Attacks using Impersonation

These types of attacks violate authenticity and confidentiality in a network. A malicious node can impersonate or spoof the address of another node in order to alter the vision of the network topology as perceived by another node. Such attacks can result in the formation of loops as described below –

(a) Formation of loops by spoofing: As shown in figure 3.4 [13], assume that path exists from A to X. Further let’s assume that A can hear B and D (which means that A is in the radio range of B and D), B can hear A and C; D can hear A and C; and C can hear B, D, E. Also suppose a malicious node M can hear A, B, C and D. The attack can be described as follows:

“To start the attack, M changes its MAC address to match A’s, moves closer to and out of the range of A. It then sends an RREP to B that contains a hop count to X that is less than the one sent by C, e.g., zero. Therefore B changes its route to the destination, X, to go through A, as illustrated in Figure. 3.4. M then changes its MAC address to match B ' s, moves closer to and out of range of B , and then sends to C an RREP with a hop-count to X lower than what was advertised by E. C then routes to X through B. At this point a loop is formed and X is unreachable from the four nodes. The attack is possible with a single malicious attacker; however, multiple attackers may collaborate for the same result.”

[image: image18.emf]AD

BCE

...

X

M

AD

BCE

...

X

M

AD

BCEX

M

...

Figure 3.4: Formation of loops by spoofing [13]

3.2.1.3
Attacks using Fabrication

In this type of attack, a malicious node tries to inject fake messages or routing packets to disrupt the routing mechanism. Such attacks are difficult to detect in a MANET since the routing packets appear to be legitimate packets to the nodes processing them. The following attacks are examples of attacks by fabrication [13]–

(a) Falsifying route errors: This type of attack exploits the broadcast mechanism of sending route error (RERR) packets in AODV and DSR routing protocols (described in chapter 2). Again consider the network shown in Figure. 3.3. Suppose that M is a malicious node that overhears broadcast packets from B and C. M can launch a fabrication attack against X by broadcasting false RERR packets to node B indicating a broken link between nodes C and X. B receives the spoofed route error message thinking that it came from C. Thus B deletes its routing entry to node X and forwards the RERR packet to node A, which also follows suit. If M repeats this procedure whenever node S establishes route to node X, it prevents node S from communicating with node X.

(b) Route cache poisoning: It refers to attacks which modify or corrupt the routing tables by injecting fake routing packets. Such an attack is possible against an optimized version of the DSR protocol, in which nodes discover routes from neighboring nodes by listening promiscuously on the broadcast channel. For example in figure 3.3, if any node overhears the route from S to X, it will add that entry to its routing table. Suppose a malicious node M advertises routes to X via itself, i.e. S-A-B-C-M-C-D-X, it creates false route entries in the listening node’s routing table.

3.2.1.4
Special attacks

Apart from the attacks described above there are two other severe attacks which are possible against routing protocols such as AODV, DSR, etc. They are described below-

(a) Wormhole Attack: The wormhole attack is a severe type of attack in which two colluding malicious nodes can tunnel packets through a “tunnel” or vertex cut in the network as shown in figure 3.5.

[image: image19]
Figure 3.5: Wormhole attack

Here, M and Q are two malicious nodes which tunnel the packets from one subnet to another. Such a type of attack is difficult to detect in a network and severely damages the communication between the nodes. Such an attack can be prevented by using packet leashes which authenticate the timing information in the packet to detect fake packets in the network [14].

(b) Black hole attack: In this type of attack, a node advertises a zero metric for all destinations causing all nodes around it to route packets towards it. The AODV protocol is vulnerable to such an attack. More details on this attack can be found in [15].

After a discussion of the challenges in designing a secure protocol and the attacks, the next section discusses a few secure routing protocols for ad hoc networks.

3.2.2
Secure and Efficient Ad hoc Distance vector (SEAD) routing protocol

The Secure and Efficient Ad hoc Distance vector routing protocol (SEAD) [16] is based upon the DSDV-SQ routing protocol (which is a modified version of DSDV routing protocol). It uses efficient one-way hash functions to authenticate the lower bound of the distance metric and sequence number in the routing table. More specifically, for authenticating a particular sequence number and metric, the node generates a random initial value x Є (0,1)(where (is the length in bits of the output of the hash function, and computes the list of values h0,h1,h2,h3,…,hn, where h0=x , and hi = H(hi-1) for 0< i ≤ n , for some n. As an example, given an authenticated hi value, a node can authenticate hi-3 by computing H (H (H (hi-3))) and verifying that the resulting value equals hi.

Each node uses one authentic element of the hash chain in each routing update it sends about itself with metric 0. This enables the authentication for the lower bound of the metric in other routing updates for that node. The use of a hash value corresponding to sequence number and metric in a routing update entry prevents any node from advertising a route greater than the destination’s own current sequence number. The receiving node authenticates the route update by applying the hash function according to the prior authentic hash value obtained and compares it with the hash value in the routing update message. The update message is authentic if both values match. The source must be authenticated using some kind of broadcast authentication mechanism such as TESLA [16]. Apart from the hash functions used, SEAD doesn’t use average settling time for sending triggered updates as in DSDV in order to prevent eavesdropping from neighboring nodes.

SEAD prevents against several types of Denial of Service attacks. It also prevents formation of routing loops. However, it doesn’t prevent the wormhole attack, which was discussed in the previous section.

3.2.3
ARIADNE

The ARIADNE routing protocol [17] proposed by Yi-Chun Hu, Adrian Perrig, etc. prevents against several types of active and passive attacks. Active attacks are those where a malicious node eavesdrops on a network and injects fake packets. On the other hand, passive attacks are threats against the confidentiality of the communication rather than the network’s function. Active attacks can be of several types such as Active-0-1 (in which the attacker owns one node), Active-1-x (in which the attacker owns one compromised node and distributes the cryptographic keys to its x-1 other nodes), and Active-y-x. In addition, an attacker that has compromised nodes is called an Active VC attacker when it owns all nodes through a vertex cut in the network that partitions the good nodes into multiple sets, thereby forcing the good nodes to communicate through the attacker nodes. The wormhole attack is an example of this type of attack.

The ARIADNE protocol is a secure routing protocol based on DSR, which withstands node compromise and uses efficient symmetric key cryptography. The assumption made in ARIADNE is that the nodes can authenticate routing messages using three schemes – shared secrets between each pair of nodes, shared secret between the communicating nodes combined with broadcast authentication or by using digital signatures. ARIADNE works in two phases, route discovery and route maintenance similar to DSR. They are in turn described below –

(a) Route Discovery: In order to authenticate the RREQ packets, every source node adds a Message Authentication Code (MAC) computed with the shared key between the source and the destination (KSD). In order to verify the intermediate nodes in a RREQ packet, every node along the path from source to destination authenticates the new information in RREQ packet using a TESLA key [18]. The destination node will buffer the RREP packet until the intermediate nodes can release their corresponding TESLA keys, after which a security condition is met. Now, the target adds a MAC to the RREP packet hashed with KSD and forwards it on the reverse path to the source node. Further, in order to prevent any malicious node from removing any previous hop from the route, a technique called per-hop hashing is used [17].

(b) Route maintenance: Route maintenance in ARIADNE is similar to DSR, where a node forwarding a packet to the next hop along the source route sends a RERR packet back to the originating node if it is unable to deliver the packet to next hop. The sender node authenticates an RERR packet by checking the time delay in receiving the packet. By using a mechanism such as TESLA, each node that will be able to authenticate the RERR packet buffers it until it can be authenticated.

Ariadne prevents against both active and passive attacks which were described above. Specifically it prevents attacks using fabrication such as forming routing loops by spoofing. It also prevents against the black hole attack by using per hop hashing mechanism and many kinds of Denial of Service (DoS) attacks due to flooding of route request packets in the network. Furthermore, it is also efficient since it is based on a reactive protocol which has a better performance than table-driven protocols, and symmetric key cryptography.

3.2.4 Authenticated Routing for Ad hoc Networks (ARAN)

Authenticated Routing for Ad hoc Networks (ARAN) [13] is a secure routing protocol based on the AODV protocol. The assumption in ARAN is that every node has a certificate that is signed by a trusted authority. The route discovery and route maintenance mechanisms are based on AODV and elaborated as follows –

Let us assume that a source node S wants to discover a route to destination node D. Also assume that A, B and C are three intermediate nodes on the path from S to D, that their certificates are certA, certB and certC and their private keys are Ka, Kb, Kc respectively. During the route discovery phase, a source node broadcasts a RREQ packet signed with its public key. The packet contains the destination node’s address D, source node’s certificate certS, a nonce N and a timestamp t. The nonce and timestamp ensure that the route is fresh. A sequence of route discovery messages is shown below:

S → * : (RREQ, D, certS, N, t) Ks
A → * : ((RREQ, D, certS, N, t) Ks) Ka,certA
B → * : ((RREQ, D, certS, N, t) Ks) Kb,certB

C → * : ((RREQ, D, certS, N, t) Ks) Kc,certC

(NOTE: * denotes a broadcast)

As shown, each intermediate node (such as A, B or C) that forwards the RREQ packet checks the signature(s) of the previous node on the packet by extracting the public key from the certificate. Further, it removes the previous node’s signature, signs the RREQ packet with its own private key, adds the certificate to the header and broadcasts the packet to its neighboring nodes. This process continues until the packet reaches the destination D.

D → C : (RREP, S, certD, N, t) Kd

C → B : ((RREP, S, certD, N, t) Kd) Kc,certC

B → A : ((RREP, S, certD, N, t) Kd) Kb,certB

A → S : ((RREP, S, certD, N, t) Kd) Ka,certA

On receiving the RREQ, D will create a route reply (RREP) packet, add the source address S, its own certificate certD, a nonce and a timestamp and sign it with its private key. An intermediate route C on receiving the RREP packet will in turn verify the signature(s) of the previous node. For example, when node B receives the RREP packet from node C, it will verify the signature of node C. It will then remove C’s certificate, sign the packet with its own private key Kb, add its certificate certB and unicast it to the next node A on the reverse path as shown above. Nodes B and A will also add a routing table entry to node D indicating that the next hop is C and B respectively.

When node B discovers a broken link to C, it initiates route maintenance as shown:

B → A : ((RERR, S, D, certB, N, t) Kb)

A → S : ((RERR, S, D, certB, N, t) Kb)

Thus it sends a RERR packet, the source node’s address, the destination address, its own certificate certB, a nonce and a timestamp signed with its private key to its previous node A. Node A will forward this unchanged to the source node S.

ARAN prevents against attacks which modify the routing information since it uses public key authentication. However, it is vulnerable to DoS attacks which flood the network with fake packets due to the use of certificates which require high bandwidth and processing power of nodes.

3.2.5
Secure Routing Protocol (SRP)

The Secure Routing Protocol (SRP) [19] extends reactive protocols such as DSR, by addition of a 6 byte SRP header to the IP packet. The assumption made by SRP is that there is a security association between a pair of source (S) and destination (T) nodes, which can be achieved by using a shared key Kst.

In the route discovery process, a source node S broadcasts a RREQ packet similar to DSR. However, an additional header is added to the underlying routing protocol packet as shown in figure 3.6.

	0
1
2
3

	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

	Type
	Reserved

	Query Identifier

	Query Sequence Number

	SRP MAC

Figure 3.6: The SRP header for route request packet

The SRP header consists of a Query Sequence Number, which is a monotonically increasing 32-bit sequence number maintained by S for every destination node T. It is incremented for every request sent by the source to that particular destination. The Query Identifier is a randomly generated 32-bit identifier which is used by intermediate nodes to identify the request. It is used to provide protection against fabrication attacks [13]. The SRP MAC is a 96 bit value calculated using the shared key Kst between the source and the destination node. This validates the integrity of the routing packet and also authenticates the origin of the routing packet.

When an intermediate node receives the RREQ packet, it checks the existence of the SRP header. If it doesn’t exist, it discards the packet else it adds the IP address of the source and destination to its routing table. It also discards the packet if the source destination pair already exists in its routing table. Further, it adds its own IP address to the request packet and rebroadcasts it to neighboring nodes.

When the destination node receives the RREQ packet, it checks the integrity of the packet by calculating the MAC over the packet using the key Kst and verifying that it is equal to the SRP MAC. If they match, the sender (S) of the packet is authentic. Besides, the destination node also checks if Query sequence number (Qseq) in the RREQ packet is less than the maximum value received by S (Smax). If Qseq ≤ Smax, then the request is considered to be an attempted replay attack and discarded.

The destination node T sends a reply packet for each valid request. This packet contains the accumulated route, Qseq and Qid fields from the RREQ packet and is hashed using a MAC function. When the source node receives this RREP, it checks the source address, destination address and Qseq and Qid fields, and discards it if it doesn’t match the entry for the corresponding node in its table.

SRP doesn’t secure route maintenance packets such as RERR, and delegates this functionality to a Secure Message Transmission (SMT) protocol [19]. The main advantage of SRP is that it guarantees successful route discovery to a node even in the presence of malicious intermediate nodes. It uses efficient symmetric key cryptography and hence performs better than ARAN. However, it requires security association between a pair of communicating nodes which may not be practical in several scenarios of deployment.

3.3 Certificate-based Authentication in MANETs

The certificate-based authentication is well studied in wired networks. However, adapting certificate-based authentication protocols to mobile ad hoc networks (MANETs) is a nontrivial task, mainly because, in a MANET, as opposed to conventional wired networks, typically no fixed infrastructure or centralized management exists. For example, a conventional certificate-based authentication system relies on a fixed trusted Certificate Authority (CA), which is responsible for the creation, distribution, renewing, and revocation of certificates. In a MANET, due to issues such as node mobility, limited wireless medium, and frequent link failures, it is typically not feasible to include such a fixed centralized CA in the network. Various approaches have been proposed to tackle the unique challenge of adapting certificate-based methods for distributed authentication in mobile ad hoc networks. The contribution of this thesis is twofold: first, an analysis of the requirements of a secure distributed authentication system for MANETs, and secondly a survey some of the existing certificate-based authentication mechanisms, their comparison including pros and cons; in the context of distributed authentication.

3.3.1
Problem Definition

The five components of a security mechanism are confidentiality, integrity, authenticity, availability and non-repudiation. Out of these, authenticity is the most fundamental issue, since a breach of authenticity leads to a system-wide compromise. A widely used authentication mechanism in conventional wired networks is the public key management system using certificates. One of the main issues to consider in a certificate-based scheme is the secure distribution of the public keys to all the nodes in the network. The Public Key Infrastructure (PKI) [20] defines methods to handle public key management using X.509 certificates. In a wired network, there exists a centralized certificate server which handles the creation, renewal and revocation of certificates. This is not feasible in ad hoc networks, due to the absence of a fixed infrastructure and centralized management. Besides, due to the dynamic topology of the network, frequent link failures may occur, resulting in issues such as re-authentication and timely communication with the certificate server.

To overcome these limitations and to reap full advantages of the certificate-based authentication mechanism, several public key management mechanisms have been proposed [21] [22] [23] [24] [25] [26]. The following sections analyze some of these methods, and discuss their pros and cons. The rest of this section is organized as follows. Section 3.3.2 discusses the requirements of a certificate-based authentication scheme for mobile ad hoc networks. Section 3.3.3 provides a survey and brief description of the employed mechanisms. In Section 3.3.4 a comparison of the schemes with respect to the requirements is provided.

3.3.2 Requirements

Five requirements have been identified for any certificate-based authentication scheme to be considered secure and effective, with respect to authentication in a mobile ad hoc network.

R.1: Distributed authentication: In ad hoc networks, due to issues such as frequent link failures, node mobility, and limited wireless medium, it is typically not feasible to include a fixed centralized Certifying Authority (CA) in the network. Further, in networks requiring high security, such a server could become a single point of failure. For example, consider a battle field scenario, where the troops are spread over a large area. In such a case, it might not be feasible to have a central server. Consider an enemy attack on the server - this would bring down the whole network! One of the primary requirements of a certificate-based mechanism is to distribute the authentication amongst a set of nodes in the network.

R.2: Resource awareness: Since the nodes in an ad hoc network typically run on batteries with high power consumption and low memory capacity, the authentication protocols must be resource-aware. That means the time and space complexity of the underlying algorithms must be acceptably low. In this regard, symmetric-key-based cryptographic techniques are more suited, as compared to public key methods, since symmetric cryptography in general incur less resource consumption. However, the issue of distributing the symmetric keys prevents their practical deployment in ad hoc networks. This is a tradeoff that must be dealt with at the application level. Since the certificate-based authentication uses public key mechanisms, which are resource-intensive, the protocol itself must be efficient both in terms of memory and power.

R.3: Efficient certificate management mechanism: The distribution of public keys and management of certificates have been studied extensively in the case of wired networks [20]. However, in applying these methods to MANETs, managing the certificates (creation, revocation and renewal) is a challenging issue. This issue is further discussed in Sections 3 and 4. Most of the current mechanisms lack a robust certificate revocation scheme.
R.4. Heterogeneous certification: As in the case of wired networks, the certifying authorities might be heterogeneous even in ad hoc networks. This means that two or more nodes belonging to different “domains” may try to authenticate each other. In such a case, there must be some kind of trust relationship or hierarchy among the Certifying Authorities. In wired networks, this is accomplished through certificate chaining.

R.5. Robust pre-authentication mechanism: Pre-authentication mechanism refers to the process of establishing necessary trust between nodes before the actual certificate creation and distribution. Though this is not a part of the certificate authentication process itself, it is pretty important in MANETs. This is because, in order to satisfy R.1, it is mandatory that nodes have prior trust between each other (by exchange of public keys, for example). Without this established, the later mutual authentication and renewal of certificates would not be possible. The Resurrecting Duckling Model proposed by Stajano and Anderson [27] was one of the early works in this field, which involved bootstrapping trust between a “mother” and a “duckling” node over a location-limited channel. Balfanz et al [28] discuss a more user-friendly and efficient approach.

3.3.3 Survey of Related Work

Certificate-based authentication usually consists of three phases. During the first phase or the “bootstrapping” phase, the nodes are issued a certificate by a certifying authority. The certificate is created by the CA using the node’s identity information, such as IP address, name, organization, and its public key. The certificate also consists of the issuing time and the expiration time besides other information. During the second phase the certificate is “renewed” due to its expiration. The third phase involves revocation of the certificate by the CA, possibly due to compromise of the private key of the certificate holder, or probably because the issuer believes that the user-key binding is no longer valid. Some of the proposed mechanisms are surveyed in the following sub-sections:

3.3.3.1
Self organized public key management

One of the certificate-based authentication methods proposed by Capkun, Buttyan and Hubaux is by formation of certificate graphs [21]. The suggested approach is similar to PGP certificates [29], apart from the fact that in PGP a central certificate server is used. A certificate graph is defined as a directed graph G (V, E) where V and E stand for the set of vertices and the set of edges, respectively. The vertices of the certificate graph represent public keys, and the edges represent certificates. As shown in Figure 3.7, a directed edge in the graph from vertex Ku to Kv represents the certificate issued by u to v by u’s signing v’s public key Kv with its own private key. In effect, thus, u is the CA for v. G contains only the valid certificates of the whole network.

Figure 3.7: Ku (Kv, certificate issued to v by u

Each node maintains an updated and non-updated local certificate repository, which consist of subset of updated and expired certificates respectively. Capkun et al argue that the use of two repositories is in providing a good estimate of the certificate graph and for node authentication. Whenever a user u wants to verify the authenticity of the public key of another user v, u tries to find a directed path in the graph by merging the updated certificate repository graphs of u and v. The chain of certificates on the path is used to authenticate v. If no path is found then the node merges its non-updated and updated certificate repositories to find expired certificates in the path. On finding such a path, it updates the expired certificate, checks the correctness and performs authentication.

The certificate creation phase begins by every node generating its own public-private key pairs. When a new node requests for a new certificate from its neighbor, the issuer verifies the authenticity of the public key. Capkun et al assume that this is done by pre-exchanging their keys over a side channel. In order to update the certificate graphs in the updated repository, a certificate exchange phase is carried out by exchanging hashes of the certificates with neighboring nodes periodically. There is an upper bound on the convergence times before all the nodes get updated with the certificate graphs. In order to maximize the efficiency of the updated certificate repository creation and updating, Capkun et al propose algorithms such as Maximum degree algorithm based on finding the path in the certificate graph with highest number of certificates.

Capkun et al do not mention any explicit certificate renewal process as it is done whenever a node finds expired certificates in its non-updated certificate repository. They suggest two methods, one explicit and the other implicit, for revocation of the certificates. In the implicit mechanism, the certificates are revoked based on their expiration time. In the explicit method, the issuer sends an explicit revocation statement for the target node that it believes no longer has a valid user-key binding. This is sent to nodes that request the issuer for updates of the certificate for the target node.

The advantage of this mechanism lies in the fully self-organized management of public keys by using certificates. However the drawbacks of this scheme are the expensive tables that have to be maintained for the certificate repositories, and each time a node moves from one locality to another, it has to renegotiate with other nodes and update the tables again.

3.3.3.2
 Providing Robust and Ubiquitous Security Support for MANETs

In this scheme, Kong et al [23] propose a distributed certification based on threshold cryptography and shared secrets. The basic goal of a threshold secret sharing method is to share a secret key k among an arbitrarily large community using a secret polynomial f(x). If the degree of f(x) is (k-1), any k members of the community can recover the secret key, while any members less than k reveals no information of the secret. Based on this, a node receives its public key from its k neighboring nodes. Here, k is a parameter which needs to be carefully tuned so that the method is effective.

The certificate creation process is as follows: Initially all the nodes in the network need to be bootstrapped with their certificates from a trusted central management. When a new node wants to obtain its certificate, it sends a request to its k neighboring nodes requesting for partial certificates. If the coalition thinks that the requesting node is a well-behaved node, they issue their partial certificates, which are then combined together by the target node to issue the new certificate using an interpolation function.

The certificate renewal is carried out by specifying a renewal Time Trenew. To renew a certificate, a network entity broadcasts its current valid certificate and a future expiration time T < (current time + Trenew) to its k one-hop neighbors. The neighboring nodes check the system public key and the Certificate Revocation List to determine whether to accept or deny the request.

The certificate revocation is carried out by two methods as suggested in [21] by implicit or explicit mechanisms. In the implicit mechanism, the certificates are revoked if the expiration time (Texpire) is lesser than the time of issue plus the time of renewal (Trenew). In the explicit certificate revocation method, each node maintains a Certificate Revocation List containing those certificates that haven’t expired yet. The node periodically consults its CRL for expired certificates and revokes them if necessary.

The basic advantage of this method is that it does not require any centralized certificate authority. However, it relies on each node having at least k one-hop neighbors for authentication. This may not be practical when k is large due to the dynamic nature of the nodes. Further, the certificates cannot be issued to nodes which are more than a hop away. It also requires a bootstrapping phase in order to distribute the system private key among k nodes initially.

3.3.3.3
Self Managed Heterogeneous Certification

Wang, Zhu and Li [21] propose a novel mechanism in which CAs from different administrative domains can co-exist in the network. They also propose a distributed certificate authority by using k-threshold secret sharing similar to the method introduced by Kong et al [23]. In order to handle heterogeneous CAs, trust graphs are used. A node A is said to trust node B when node B can be verified as authentic based on B’s digital certificate signed by a CA that A currently trusts. Each node maintains a list of CAs that it trusts.

Whenever a node needs to obtain a certificate, it has to collect K IDs of valid share holders from its one-hop neighbors and constructs the private key. Whenever a node A wishes to authenticate another node B, it begins by sending B its CA list. Similarly B sends A its own CA list. A then compares the two lists to check if there are some common CAs, and if so, A proceeds to send its certificate to B certified by the common CA. B responds by sending its own certificate to A. If the two nodes don’t have a common CA, then they proceed to search their one-hop and two-hop neighbors through a Distributed Multi-hop Certificate Request (DMCR) algorithm.

The steps for certificate renewal are similar to the DMCR scheme. However certificate revocation is not discussed. Main advantages of this approach include (i) support for cross-certification between CAs in different domains; (ii) the certificate discovery mechanism occurs over multiple-hops.

3.3.3.4
Trust- and Clustering-Based Authentication

Ngai et al [24] discuss a trust model and a network model in order to enhance the security of public key certification. Their network model is based upon hierarchical organization or clustering of the network by some clustering algorithms. The authors perceive that such algorithms improve the security and the efficiency of the network. They assume that the network has been divided into clusters with unique IDs.

Their trust model is based upon the web-of-trust model similar to PGP [29], in which any user can act as the certifying authority. They define trust quantitatively as a continuous value between 0 and 1. Each node maintains a list of trust values for other nodes in the network. A direct trust is defined as a trust relationship between two nodes in the same group, and a recommendation trust as the trust relationship between nodes of different groups. In order to build the trust relationship they assume that the nodes are equipped with some detecting component such as watchdog for monitoring the behavior of nodes.

Public key management is assumed to be present within a cluster. Whenever a node wants to authenticate a node in another cluster, it communicates with several other introducing nodes in that cluster. It sorts the introducing nodes based on their trust values and computes a weighted trust value by combining its trust values of the introducing nodes with the trust values of the introducing nodes to the target node. The final trust value is then stored and used to evaluate other nodes in that group.

The authors do not discuss a mechanism for renewal and revocation of the certificates. The advantage of the mechanism is that it is able to discover and isolate a high percentage of malicious nodes when compared to PGP based methods. The disadvantage is that the storage of the trust values and their computation is both memory and time consuming. Further, the mobility of nodes leads to change of membership of nodes in various clusters.

3.3.4 Comparison of the mechanisms

Table 3.1 compares the four mechanisms with respect to the requirements.

	Requirements
	Self Organized Public Key Management – Capkun, etc.
	Providing Robust and Ubiquitous Security Support for Mobile Ad hoc Networks – Kong,etc.
	Self Managed Heterogeneous Certification in Mobile Ad Hoc Networks – Wang, et.al.
	Trust- and Clustering-Based Authentication Services in Mobile Ad Hoc Networks – Ngai, et.al.

	R.1. Distributed authentication
	It is a totally distributed certification method since every node acts as a CA.
	Totally distributed and scales well to large networks
	Totally distributed and scales well to large networks
	Distributed and self organized since every node acts as a CA

	R.2.

Resource awareness
	Each node maintains two certificate repositories, which incurs a high overhead.
	The generation and distribution of keys using complex polynomial functions is resource-intensive and time consuming.
	Each node only maintains a list of its trusted CAs. Thus it is more efficient than method proposed in [21].
	The maintenance of trust tables and the monitoring components are memory intensive.

	R.3.(a) Creation
	Self–signed certificates, and hence more robust than a shared key based mechanism
	Requires at least k neighbors which might be a bottleneck
	Similar to K-threshold mechanism [23]
	Across nodes, creation is based on trust values. The existence of introducing nodes may not be true at all times.

	R.3.(b) Renewal
	No explicit mechanism discussed
	Same as issuance
	Implemented through the DMCR algorithm
	Not discussed

	R.3.(c) Revocation
	Explicit revocation causes delay between far-away nodes in the network.
	System CRL table stored at each node and hence memory intensive.
	Not discussed
	Not discussed

	R.4. Heterogeneous certification
	Not implemented.
	Not implemented.
	Implemented using trust graphs.
	Not implemented

Table 3.1: Comparison of the certificate-based authentication mechanisms in MANETs

Note that requirement R.5 is not considered in table 3.3, since it is not an inherent part of the certificate mechanism itself.

3.3.5
Metrics for Evaluation

The following metrics have been identified, based on which the authentication mechanisms can be evaluated. Some of the metrics have been adapted from [23].

a) Successful Certification Ratio (µ) measures the ratio of the number of successful certification services (including issuance, NCISS, and renewal, NCREN, respectively) to the total number of requests for such services (NCTOT-ISS and NCTOT-REN, respectively). It gives an idea about the efficiency of the mechanism in providing successful certification services. If µREN is the successful certification renewal ratio, and µISS is the successful certificate issuance ratio, then their respective value can be calculated as follows:

[image: image20.wmf]REN

TOT

REN

NC

NC

REN

-

=

m

[image: image21.wmf]ISS

TOT

ISS

NC

NC

ISS

-

=

m

Here, NCREN and NCISS are the respective total number of certificate renewed and issued, and NCTOT-REN and NCTOT-ISS the respective number of requests for certificate issuance and renewal.

b) Settling time (st) measures the initial time taken for all the nodes in the network to be issued valid certificates. The value of st can be calculated as the difference between the time when all the nodes are issued valid certificates and the starting time when the process of certificate issuance begins. The settling time taken will depend on factors such as the number of malicious or non-cooperative nodes, the algorithms used for key generation and distribution, etc. If the pre-authentication methods are efficient (R.5), the settling time will be less.

c) Frequency of Certification (fcert) measures the number of certification services per time interval.

[image: image22.wmf]int

T

N

f

cert

cert

=

Here Ncert is the total number of certification services (issuance/renewal) by nodes in the network, and Tint is the simulation time. As the topology of the network changes, it is expected that there will be frequent certificate issuance and renewal processes. This incurs overhead, since each time a node wants to create or renew its certificate costly computations have to be carried out for the public key mechanism. We intuitively predict that a distributed and self-organized mechanism will have a lower frequency of certificate creation, renewal and revocation, and hence, a lower fcert.

d) Average Certification Delay (acd) is measured as the time delay between the certificate service request (CSReq) and the certificate service reply (CSRep) averaged over the simulation time.

[image: image23.wmf]int

..

1

)

Re

Re

(

T

q

CS

p

CS

acd

i

i

n

i

-

S

=

=

This value estimates the efficiency of the algorithm, and mainly depends on the time complexity of the algorithm.

3.4
Summary

This chapter provides an overview of the security issues in MANETs. It classifies the attacks that are possible against the existing routing protocols such as AODV, DSR, etc. An understanding of these attacks and their impact on the routing mechanism will help researchers in designing secure routing protocols.

This chapter surveys four secure routing protocols for MANETs, discusses their pros and cons, and compares each other with respect to their features. The protocols discussed are just a few among the myriad proposed and currently being researched on. As evident, most of these secure protocols are based upon the existing pro-active or reactive protocols. Due to the added security “layers”, they incur performance overhead when compared to the base protocols. A comprehensive performance evaluation of these protocols is needed to better understand the tradeoffs between performance and security. Chapter 5 delves more into these issues and demonstrates a set of experiments which claim the facts described above.

This chapter also surveys the key management issue in mobile ad hoc networks, focusing on certificate-based mechanisms. As evident, the solutions for key management using certificates make several assumptions about the distribution of public keys and the trust relationship between nodes, which might not be practical at all times. The chapter also throws light on some of the requirements which are mandatory for an effective certificate-based authentication system. Further, it proposes some qualitative and quantitative metrics for study of these mechanisms.

CHAPTER 4: SIMULATION STUDY OF PERFORMANCE IN MANETs

4.1
Introduction

Over the past few years there has been a growing interest in the research community for simulation study of performance in MANETs since there is a lack of necessary infrastructure for MANETs to be deployed in a realistic scenario. A simulation study gives us an idea of how a protocol performs when it is practically employed. This approach is similar to the prototyping model in software engineering realm. However, the main challenge in the simulation study of MANETs is the dynamic nature of the network topology and the physical environment in which the nodes operate. In order to gain an insight of how a protocol performs when deployed in a realistic scenario, it is imperative that the simulation capture the exact nature of the physical environment and the movement of the nodes in the network, which might not be possible in all cases. For example consider a scenario where a set of nodes are deployed in a rescue operation. Even though the mobility of the nodes can be captured with certain realistic mobility models, the node doesn’t capture the exact physical environment in which the nodes operate, such as uneven terrains, catastrophic failure of the nodes, etc.

This chapter discusses the simulation study of performance in MANETs using the network simulator ns-2 and certain realistic mobility models used to model the movement of the nodes. It is followed by a step-by-step tutorial for simulation study of MANET routing protocols using ns-2. A set of experiments conducted to study the performance of AODV in a battlefield scenario is then explained.

4.2 The ns-2 network simulator

Ns-2 is an open source discrete event simulator used by the research community for research in networking [30]. It has support for both wired and wireless networks and can simulate several network protocols such as TCP, UDP, multicast routing, etc. More recently, support has been added for simulation of large satellite and ad hoc wireless networks. The ns-2 simulation software was developed at the University of Berkeley. It is constantly under development by an active community of researchers. The latest version at the time of writing this thesis is ns-2 2.28.

The standard ns-2 distribution runs on Linux. However, a package for running ns-2 on Cygwin (Linux Emulation for Windows) is available. In this mode, ns-2 runs in the Windows environment on top of Cygwin as shown in the figure 4.1. The simulations performed (discussed in following sections) have been run in this environment.

Figure.4.1: ns-2 over Cygwin

NS-2 provides a split-programming model; the simulation kernel is implemented using C++, while the Tcl scripting language is used to express the definition, configuration and the control of the simulation. This split-programming approach has proven benefits over conventional programming methods. Also, NS-2 can produce a detailed trace file and an animation file for each ad hoc network simulation that is very convenient for analyzing the routing behavior.

4.2.1 Wireless Support

The Monarch research group at Carnegie-Mellon University developed support for simulation of multi-hop wireless networks complete with physical, data link, and medium access control (MAC) layer models on NS-2. It provides tools for generating data traffic and node mobility scenario patterns for the simulation. Also, four ad hoc network routing protocols (AODV, DSDV, DSR and TORA) have been implemented.

In NS-2, the Distributed Coordination Function (DCF) mode of IEEE 802.11 for wireless LANs is used as the MAC layer protocol. The radio model uses characteristics similar to a commercial radio interface, Lucent’s WaveLAN [30]. WaveLAN is modeled as a shared-media radio with nominal bit rate of 2Mb/s and a nominal radio range of 250 meters. The signal propagation model combines both a free space propagation model and a two-ray ground reflection model.

4.2.2 Other add-on utilities

The standard ns-2 distribution comes with several “add-on” utilities which can be used to model the motion of the nodes, specify the traffic flow between them or visualize the network topology and traffic flow as an animation. Some of these utilities used for the experiments are further described below-

(i) cbrgen.tcl: The ns –package comes with a traffic generator utility which can be found in the folder ~ns/indep-utils/cmu-scen-gen/ (where ~ns denotes the ns-directory, for example, /home/administrator/ns-allinone2/ns-2.27/ for the ns-2.27 version) . This utility is used to generate trace files for specifying the type, duration and the rate of traffic flow in the network. The utility can be invoked by calling the Tcl script cbrgen.tcl as follows-

 $ ns cbrgen.tcl [list of parameters]

List of Parameters:

· Type of traffic: CBR or TCP

· Seed: starting number for random number generator

· Nr: number of node

· Nc: maximum number of connection

· Rate: number of packet per second (bit rate)

The output values can be written to a file using the > directive on the command line. This file can be used as an input to the Tcl script which is described in a later section.

(ii) setdest utility: The setdest utility developed at CMU is used to generate node movements according to the Random Waypoint Model [31]. It is available under ~ns/indep-utils/cmu-scen-gen/setdest directory and consists of setdest{.cc,.h} and Makefile. The utility can be run with the following arguments-

./setdest [-n num_of_nodes] [-p pausetime] [-s maxspeed] [-t simtime] \

 [-x maxx] [-y maxy] > [outdir/movement-file]

The outdir/movement file specifies the output file which can be integrated with the simulation script as described in the tutorial section.

(iii) Network Animator (nam): The network animator (nam) is a graphical tool used to visualize the simulation results graphically and trace the packet flow in a network as shown below -

[image: image24.png]nam; out. nam,

Hle Views analysis outnam

| - l\;‘ » sestezn | Stepi20ms

%
/

@
©0)

[i

‘\H\H\H‘\\H\H\\‘H\H\H\‘m\\HH‘H\H\H\‘\H\HH\‘\\H\HH‘H\HH\\‘\H\HH\‘\HHHH‘\HHHH‘H

Figure 4.2: Screenshot of Nam window

4.2.3 Advantages and Disadvantages of ns-2

The main advantage of the ns-2 simulator is that it is an open-source software and hence freely available. Further, it is also easily extensible; any addition or modification to existing routing protocols is relatively easy. However, the flip side is the complexity of coding – An understanding of two languages, C++ and Tcl is needed to develop any new protocols due to the split-programming approach. Besides, the user interface is also not attractive and the learning curve is steep.

4.3 Mobility Modeling

In order to simulate the movement of nodes in an ad hoc network, several mobility models have been proposed [31]. It is quite important that the mobility model chosen represent the movement of the nodes exactly since the mobility of the nodes impacts their performance. The mobility models can be classified into two categories based on the temporal and spatial dependency between the nodes in the network – entity mobility models and group mobility models. The following sections describes these mobility models in detail –

4.3.1 Entity mobility models

The entity mobility models represent the movement of nodes where each node’s movement is independent of other node’s movement. Many such mobility models have been proposed. This section discusses a few of them used for research.

i. Random Waypoint Mobility Model :

As the name suggests, the random waypoint mobility model represents the random motion of nodes in a terrain. The movement pattern of a node in this model is as follows – first, the node stays in a location for certain period of time called the pause time. Once this time expires, it chooses a random destination in the simulation area and a velocity that is uniformly distributed between [minspeed, maxspeed]. The mobile node then travels towards the newly chosen destination with a uniform speed. After reaching the destination, it is again static for the duration of pause time and continues the process. The RWM has been extensively used in modeling the movement of nodes for the study of protocol performance [5] [10] [11] [16].

The RWM has found to be insufficient to capture the realistic movement of nodes. Further, it also fails to converge when the pause time increases and the average speed of the nodes decreases over time [31]. One of the solutions proposed for this problem is to set a non-zero minimum speed for the nodes. Another solution is to “cut off” some initial part of the simulation so that the nodes’ movements stabilize.

ii. Gauss Markov Mobility Model:

The Gauss Markov Mobility model was initially used to simulate the movement of nodes in a Personal Communication System (PCS) [32]. In this model, the level of random movement of the nodes can be changed by using a tuning parameter. Each mobile node is assigned a current speed and direction initially. At fixed time intervals, n, the speed and direction of each node is updated based on the (n-1)st instance using the equations –

[image: image25.wmf]1

)

1

(

)

1

(

2

1

-

-

+

-

+

=

-

n

x

n

n

d

d

d

d

a

a

a

Where,

· sn and dn are the new speed and direction of the MN at time interval n;

· , where 0 ≤ ≤1, is the tuning parameter used to vary the randomness;

· s and d are constants representing the mean value of speed and direction as

n (; and
[image: image26.wmf]1

-

n

x

S

 and
[image: image27.wmf]1

-

n

x

d

 are random variables from a Gaussian distribution

iii. City Section Mobility Model

The City Section Mobility Model represents the movement of mobile nodes in a city street. For example it can depict the movement of cars on the streets. The speed limits and the streets are based on the type of city simulated. For example, in the Manhattan grid mobility model [31], movement of the nodes is modeled upon the Manhattan city streets. In this mobility model, the whole simulation area is divided into several grids representing streets in a city. The mobile nodes are initially spread out randomly in the simulation area. They choose a random destination and move to that point on the path that takes the shortest time. Upon reaching the destination, the node pauses for a random time and moves to another street.

The city mobility model depicts the realistic motion of vehicular traffic in a section of the city since it restricts the motion of the nodes.

4.3.2 Group mobility models

The entity mobility models depict independent motion of the nodes in a MANET. However, there are scenarios in which the nodes form clusters, and the movement of the nodes within the clusters is dependent on the movement of other nodes. For example consider the battlefield scenario where groups of soldiers are deployed in a battlefield. In this case every soldier’s movement in the group is dependent upon the troop leader. The group mobility models capture such movements of nodes. In this section, one of the group mobility models- the Reference Point Group Mobility (RPGM) model is explained.

i. The Reference Point Group Mobility (RPGM) Model

The RPGM model represents the random motion of a group of nodes as well as the motion of the individual nodes within the group. An individual node in a group moves randomly depending upon the direction and velocity of its “logical center”, which is updated at predefined time intervals. The logical center of a group is used to calculate a group motion vector, which completely characterizes the movement of the nodes within its group. Further, each node also selects is direction and velocity according to a random motion vector and a fixed reference point. The random motion of both the logical center and the individual nodes are calculated using the Random Waypoint Model.

The RPGM model can be used to depict several scenarios of deployment such as movement of soldiers in a battlefield, avalanche rescue, etc.

4.4
Scenario-based Experiments for Performance Evaluation of MANET Routing Protocols

In order to analyze the performance of routing protocols in MANETs in the real world, a scenario based simulation analysis is needed since there is a lack of necessary infrastructure for their deployment. Most of the earlier work done in this area [5] [10] [11] have assumed the Random Waypoint model, which fails to capture the realistic movement of the nodes. In this section, we describe a set of experiments conducted to analyze the performance of the AODV routing protocol in a battlefield scenario. Initially an explanation of the experimental metrics and the setup is described, followed by the scenarios used for our simulations. The results give an idea of how the protocol behaves in the given scenario and helps identify the metrics for optimal performance of the protocol.

4.4.1 Performance evaluation of AODV in a battlefield scenario

As explained in section 2.4.2, the AODV routing protocol uses a combination of table-driven and reactive methods to achieve optimal performance. It has been found previously, that AODV achieves a higher packet delivery fraction and lower latency than the table-driven protocols. Further, it also adapts well to node mobility and link changes. In following sections we describe the experiments carried out to analyze the performance of AODV in a battlefield scenario. It is found that AODV achieves high packet delivery fraction, low end to end delay and normalized routing loads in medium size networks with lower mobility of nodes.

4.4.2
Experimental Setup and Metrics

The ns-2 simulator was used for the experiments. We now describe the traffic pattern, the scenario description and the metrics that were used for the experiments.

(i) The traffic pattern

The traffic pattern file was generated using the “cbrgen.tcl” script (explained in section 4.2.2). The parameters used were as follows –

	Type of traffic
	Constant Bit Rate

	Packet Size
	512 bytes

	Packet Rate
	4 pkts/sec

	Maximum number of connections
	20

Table 4.1: Traffic pattern

(ii) Scenario description

The scenario was generated using the BonnMotion software. BonnMotion is a Java-based software which creates and analyses mobility scenarios. It generates the movements of nodes in an ad hoc network as a trace file which can be imported into ns-2 (explained in the tutorial provided in appendix-B). It has support for several mobility models such as the RPGM, Random Waypoint model, Gauss Markov mobility model, etc. The following metrics were used to depict a battlefield scenario.

	Dimensions
	2000*2000

	Mobility Model
	Reference Point Group Mobility Model (RPGM)

	No. of nodes
	50

	Min. speed
	1 m/s

	Max. speed
	5 m/s

	Average number of nodes in a group
	10

	Probability of group change
	0.01

	Pause time
	60 sec

Table 4.2: Parameters for the battlefield scenario

(iii) Metrics:

The following metrics were used for performance evaluation-

a. Packet Delivery Fraction (PDF): This is the ratio of total number of packets successfully received by the destination nodes to the number of packets sent by the source nodes throughout the simulation.

[image: image28.wmf]ntPackets

numberOfSe

ets

ceivedPack

numberOf

PDF

Re

=

This estimate gives us an idea of how successful the protocol is in delivering packets to the application layer. A high value of PDF indicates that most of the packets are being delivered to the higher layers and is a good indicator of the protocol performance.

b. Normalized Routing Load (NRL): This is calculated as the ratio between the no. of routing packets transmitted to the number of packets actually received (thus accounting for any dropped packets).

[image: image29.wmf]ceived

taPackets

numberOfDa

tsSent

utingPacke

numberOfRo

NRL

Re

=

This metric gives an estimate of how efficient a routing protocol is since the number of routing packets sent per data packet gives an idea of how well the protocol maintains the routing information updated. Higher the NRL, higher the overhead of routing packets and consequently lower the efficiency of the protocol.

c. Average end to end delay (AED) : This is defined as the average delay in transmission of a packet between two nodes and is calculated as follows-

[image: image30.wmf]ceived

rOfPackets

totalNumbe

Sent

timePacket

ceived

timePacket

AED

n

i

i

Re

)

Re

(

0

i

å

=

-

=

A higher value of end-to-end delay means that the network is congested and hence the routing protocol doesn’t perform well. The upper bound on the values of end-to-end delay is determined by the application. For example multimedia traffic such as audio and video cannot tolerate very high values of end-to-end delay when compared to FTP traffic.

(iv) Research methodology

Three parameters in the battlefield scenario were varied - pause time, the total number of nodes and average number of nodes in a group and their impact on the three metrics described above were studied. The results are discussed in the next section.

4.4.3 Results

i. Effect of varying the number of nodes

The number of nodes was varied from 50 to 100 and the effect on PDF, NRL and AED was studied. The results can be found in table 4.3 and figures 4.3, 4.4 and 4.5.

	No. Of Nodes
	Packet Delivery Fraction (%)
	Average End-end delay (sec)
	Normalized Routing Load

	50
	99.91438
	0.006738278
	0.2570694

	60
	100
	0.006566893
	0.3088803

	70
	100
	0.013576984
	0.42168674

	80
	99.95756
	0.032688957
	0.47558385

	90
	99.95761
	0.010179137
	0.49618322

	100
	99.872444
	0.010737591
	0.553427

Table 4.3: Effect of varying the number of nodes

It is found that the packet delivery fraction decreases as the number of nodes in the network increases. This is due to the fact that as number of nodes increases, the congestion in the network also increases and hence the number of lost packets due to retransmission also increases. Further, since AODV uses a table driven approach, the processing delay at the nodes also increases with an increase in the size of the network thereby accounting for the higher end-to-end delay. The normalized routing load increases with an increase in number of nodes due to an increase in the routing packets in the network.

[image: image31.emf]No. of Nodes Vs PDF

99.8

99.85

99.9

99.95

100

100.05

5060708090100

No. Of Nodes

PDF

Figure 4.3: Effect of varying the number of nodes on the pause time

[image: image32.emf]No. Of Nodes Vs Avg end-end delay

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5060708090100

No. Of Nodes

Average end-end delay (sec)

 Figure 4.4: Effect of varying the number of nodes on the Average end-end delay

[image: image33.emf]No. of nodes Vs Normalized routing load

0

0.1

0.2

0.3

0.4

0.5

0.6

5060708090100

No. of nodes

Normalized routing load

 Figure 4.5: Effect of varying the number of nodes on the Normalized Routing Load

The blue circles in figures 4.3, 4.4 and 4.5 represent the “optimal points” which corresponds to the highest PDF, lowest end-to-end delay and the lowest normalized routing load. It is found that for 60 nodes we achieve this optimal point.

ii. Effect of varying the pause time

The effect of varying the pause time on the three metrics are shown in table 4.4 and the corresponding graphs are shown in figures 4.6, 4.7 and 4.8. It can be inferred that as pause time varies, the packet delivery fraction also increases. This is due to the fact that as pause time increases, the relative mobility of the nodes decreases, and hence the congestion also decreases in the network.

	Pause Time (sec)
	Packet Delivery Fraction (%)
	Average End-to-end delay (sec)
	Normalized routing load

	10
	99.87218
	0.006634372
	0.25597268

	20
	99.957466
	0.006683255
	0.25531915

	30
	99.91536
	0.006524965
	0.25412962

	40
	100
	0.010312819
	0.27754056

	50
	100
	0.010314601
	0.2742616

	60
	99.91438
	0.006738278
	0.2570694

Table 4.4: Effect of varying the pause time

The end-to-end delay also decreases as the pause time is increased. This can be explained as follows – as the pause time increases, the network topology is relatively stable and hence the number of stale routes in the routing tables decreases. Thus route discovery and maintenance take less time. This also reduces the number of routing packets in the network, thereby decreasing the NRL.

[image: image34.emf]Pause Time Vs PDF

99.8

99.85

99.9

99.95

100

100.05

102030405060

Pause Time (sec)

PDF

Figure 4.6: Effect of varying the pause time on PDF

[image: image35.emf]Pause Time Vs Avg end-end delay

0

0.002

0.004

0.006

0.008

0.01

0.012

102030405060

Pause Time (sec)

Packet Delivery Fraction

Figure 4.7: Effect of varying the pause time on average end to end delay

[image: image36.emf]Pause Time Vs Normalized Routing load

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

102030405060

Pause time (sec)

Normalized routing Load

Figure 4.8: Effect of varying the pause time on NRL

From figures 4.6, 4.7 and 4.8 it can be inferred that for a pause time of 20 sec (represented by a blue circle), we obtain optimal values for the three metrics.

iii. Effect of varying the average number of nodes

The effect of varying the average number of nodes on the three metrics is shown in table 4.5.

	Avg. No of Nodes
	Packet Delivery Fraction (%)
	Average end-end delay (sec)
	Normalized routing load

	5
	100
	0.011443271
	0.27754056

	6
	99.95726
	0.015179819
	0.2992732

	7
	99.91536
	0.006548823
	0.25477707

	8
	100
	0.006707324
	0.25575447

	9
	99.87288
	0.018596672
	0.3182011

	10
	99.91438
	0.006738278
	0.2570694

Table 4.5: Effect of varying the average number of nodes

The graphs for the three metrics are shown in figures 4.7.4.8 and 4.9.

[image: image37.emf]Average no. of nodes Vs PDF

99.8

99.85

99.9

99.95

100

100.05

5678910

Average no. of nodes in a group

Packet Delivery Fraction

Figure 4.9: Effect of varying the average number of nodes on the PDF

From figure 4.9 it can be inferred that the PDF decreases as the average number of nodes in a group is decreased. This is due to the face that as the average number of nodes increases, the density increases, thereby causing more congestion in the network. Since AODV uses HELLO messages for neighbor detection, as the node density increases, the number of such packets also increases, thereby decreasing the PDF.

The effect of increasing the average number of nodes on the average end-to-end delay is shown in figure 4.10. It is found that the delay decreases the density increases, thereby indicating that AODV scales well to the network density. Further by not using source routing, it achieves lower latency due to a lesser packet overhead.

[image: image38.emf]Average no. of nodes Vs Average end-end delay

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

5678910

Average no. of nodes in a group

Average end2end delay

Figure 4.10: Effect of varying the average number of nodes on the AED

[image: image39.emf]Avg no. of Nodes Vs Normalized routing load

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5678910

Average no. of nodes

Normalized routing load

Figure 4.11: Effect of varying the average number of nodes on the NRL

Figure 4.10 shows the effect of varying the average number of nodes in a group on the routing load. In general, AODV has less routing overhead achieving a peak load of about 0.32 when the average number of nodes in a group is 9 (represented by blue circles in the graphs). From the graphs, it can be inferred that the optimal point corresponds to 8 nodes per group.

4.4.4
Conclusion

For the battlefield scenario, AODV has found to perform well for lower pause times (20 sec), higher density of nodes (9 per group) and smaller networks. As the network size increases, the performance drops due to a table-driven approach. However, since it does not use source routing, it has a much lower end to end delay for In order to analyze the performance of routing protocols in practice, such a scenario-based approach is vital. It also helps identify the suitable routing protocol for an optimal network size, the mobility of the nodes, the network density and a given traffic pattern.

A more comprehensive study of other routing protocols such as DSR, TORA, DSDV, etc. is needed to choose the right protocol for a given scenario.

4.5
Summary

This chapter discusses about the simulation-based approach to performance study of routing in MANETs. It gives an introduction to the ns-2 simulator and describes some useful utilities for ad hoc networking research. Some of the pros and cons of the ns-2 simulator are then described.

The chapter also discusses some mobility models used for simulating the movement of nodes in an ad hoc network. Several other mobility models are being developed which try to mimic the environment in which the nodes are deployed. Such models are very useful in gaining a deeper understanding of the performance of routing protocols in realistic deployments.

The rest of the chapter describes a set of scenario-based experiments carried out to analyze the performance of AODV protocol in a battlefield scenario. The experiments give an insight into the working of the protocol in such an environment.

CHAPTER 5: SCENARIO BASED PERFORMANCE EVALUATION OF SECURE ROUTING IN MANETs

Security in MANETs is of prime importance in several scenarios of deployment such as battlefield, event coverage, etc. The traditional non-secure routing protocols for MANETs fail to prevent against attacks such as DoS, spoofing and cache poisoning. One of the primary goals of designing secure routing protocols is to prevent the compromised nodes in the network from disrupting the route discovery and maintenance mechanisms. However, this added security comes at the cost of performance. In this chapter the performance of SEAD is compared with DSDV and DSR protocols, using a set of scenario-based experiments. The tradeoffs between performance and security are analyzed. The scenarios used depict critical real-world applications such as battlefield and rescue operations, which tend to have contradicting needs. The performance evaluation gives an insight into the applicability of the three protocols under consideration and helps identify which protocol is more suitable for a given scenario.

5.1 Introduction

Secure routing in ad hoc networks has been studied extensively in literature [13] [15] [16] [17] [19]. Designing secure routing protocols for ad hoc networks is challenging for several reasons. On one hand, the protocol must protect against multiple coordinated attacks from compromising the network. Since ad hoc networks are typically deployed in an open environment where all nodes participate in the routing mechanism, designers are faced with issues such as preventing against both active and passive attacks [15]. On the other hand, since the nodes are typically deployed in hostile or inhospitable terrains where there are stringent power requirements, the routing protocol must be power-aware. This implies that the cryptographic primitives used for implementing the security measures must be fast and efficient. The tradeoffs between security and performance have to be analyzed so that the routing protocol performs optimally under all conditions.

Past studies [13] [15] have identified the threats which any secure routing protocol must address. First, there are the external attackers who try to disrupt the routing by injecting fake packets or falsifying the route information. Then, there are the compromised nodes, which might advertise incorrect routing information to other nodes. Yi-Chun Hu etc. [13] provide a model for classification of several types of attacks possible in a MANET. Several secure routing protocols have been proposed, such as the SRP [19], SEAD [16], ARIADNE [17] and ARAN [13], each of which protects against some of these attacks, though a ubiquitous solution has not yet been achieved.

Motivation for this research stems from the fact that, though the performance of secure routing protocols for MANETs have been analyzed previously, they have assumed the Random Waypoint mobility model which fails to converge at higher pause times [33]. Further, the Random Waypoint mobility model is not sufficient to capture some realistic scenarios of MANET deployment. In order to model the movements of nodes in a realistic terrain such as a battlefield, rescue operation, etc. we need more sophisticated mobility models, some of which were described in chapter 4. This chapter focuses on the design of our scenario-based experiments and analyzes the performance of SEAD (chapter 3). Its performance is compared with DSR and DSDV. The tradeoffs between performance and security are analyzed for specific scenarios of deployment.

The rest of the chapter is organized as follows. Section 5.2, explain the experimental setup. Section 5.3 discusses some of the issues faced and how they were solved. The scenarios used and the metrics are described in Section 5.4. In Section 5.6, the results obtained are analyzed and Section 5 concludes this chapter with pointers to future work.

5.2 Experimental Setup

For the scenario-based experiments, we used the ns-2 simulator which is available as an open source distribution [30]. Specifically, the ns-2.27 version is used on a Cygwin environment (as shown in figure 4.1). For generating the scenarios, the mobility scenario generation tool, BonnMotion is used. CMU’s wireless extension to the ns-2 simulator is used, which is based on a two-ray ground reflection model. The radio model corresponds to the 802.11 WaveLAN, operating at a maximum air-link rate of 2 Mbps. The Media Access Control protocol used is the IEEE 802.11 Distributed Coordination Function (DCF). The traffic pattern file is generated using “cbrgen.tcl” script, which is provided along with the standard ns-2 distribution. CBR traffic with the following parameters are used for the simulations –

	Traffic pattern

	Maximum number of connections
	20

	Application data payload size
	512 bytes

	Packet rate
	4 packets / sec

Table 5.1: Traffic pattern for the scenarios

Thus, effectively a bandwidth of 16 Kbps is used, which corresponds to applications such as the Combat Network Radio (CNR), which are self-forming networks comprised of highly mobile radios that can transmit voice and data for battlefield operations. For a more detailed explanation of how the experiments were actually carried out, kindly refer to the tutorial provided in the appendix.

5.3
Issues Faced

This section lists some of the issues faced while running the experiments and how they were resolved.

5.3.1 SEAD source code version compatibility

The original SEAD source code by the authors Yih-Chun Hu, David B. Johnson, and Adrian Perrig was developed in an older version of ns-1. So the source code had to be ported to ns-2.27 since several pre-defined classes have been modified in the recent version. Hence, when the code was incorporated into the ns-2 simulator, it gave several errors during compilation. In order to resolve this, the Active File Comparator version 1.8 was used. This software is useful in comparing two source code versions and displays the differences between them in a graphical format. A screenshot of this software is shown in figure 5.1. Using this software, the SEAD source code was compared with the latest version of DSDV (available with the ns-2 distribution). Several classes in the SEAD source code were modified to make it compatible with ns-2. The modified source code is attached in appendix-c.2.

[image: image40.png]Compare

Fie Mak Edt Seach Giew Look Show Optins e
[~ wone) - 40 | [TRY Ot 0GR <? 7 &
0 v cleyminhomeADellvs alinons 2 27vis 227\ € v cleyguinhome\Delinslinns 2 27ns 2 27\dsd -
Name En &S |Dse] Name En &S |Dse ~
p <Up> 0403051234 |t <Up > AO3051234
= | B dstoonak 2017 150205 2247 dvecbak 2017 150205 2247
— |2 dsdvoldec 34877 120104 1858 sdvoldcc 34877 1201041858
o [drtominice 29512 171020700 T 2912 171020700
ddvee 32108 1502052350 ddvee 32108 1502052350
wablece 3959 1201041958 [nablece 3989 1200041856
= 58 char buf[1024]; ~ 93| char buf[1024]; -~
= 59 b | 94 b |
- 60 unsiomed char Twalk = p->accessdata [); 95| unsigned char *walk - p->accessiata (:
o =l e =
= G2 ine ot = F(valke) 57 ine ot = *(valke)
[63 inc seq, dst, met; 58 in seq, dst, met;
- 6 s
- 65 suprint (buf, 1024, “Ves %5t s [sd1i%, tyve, mow, me, ctls 100 smprinct (but, 1024, Vs %.5¢ sd_ [5d):", type, now, me, ctl;
66 while (ct--) 101 while (ct--)
=l 67 { 102 {
B & dst = F(ualke : 103 dst = F(ualke :
T |e & 104 dst = dst << 8 | *(valket];
® & 105 dst = dst << 8 | *(walk+H)
® & 106 dst = dst << 8 | *(walk+H)
65 met - twalkens 107 met - vl
- 7 seq = *(walks) : 105 seq = *(walks) :
1 71 seq = seq << 8 | *{walk+H); 109, seq = seq << 8 | *{walk+H);
7 Seq < seq << 6 | F(valki+); 110 Seq < seq << 6 | F(valki+);
7 Seq < seq << 6 | *(valkid); 11 Seq < seq << 6 | *(valkid);
74 snprintf (buf, 1024, "%s (%d,%d,%d)", buf, dst, met, seq); 112 snprintf (buf, 1024, "%s (%d,%d,%d)", buf, dst, met, seq);
75 ¥ 113 ¥
76 7/ Wow do trigger handling. 14 /) Wow do trigger handling.
77 //trace("VIU .5t %a", now, ue)s 115 //trace ("VTU %.5¢ a, now, e
78| it (verbose) 116 i (verbose_)
73 crace (i3, buf)s 117 teace ("2, bu);
80} 118}
o 115
62/// Prints out an rrable eleuent. 120 // Frints out an resble elemenc.
<
dst < ast << © 1 Tiwalkrns

ciicyguinthome|Dellns-alinane-2.27ins-2.27\dsdvidsdy-sead-original.cc.

1061 14

Figure 5.1: Screenshot of Active File Compare

5.3.2 Bug in Java-based trace file Parser

A Java program is used to trace the output files and generate the statistics such as total number of received packets at all nodes, the packet delivery fraction, the average end-to-end delay, etc. for a given scenario and a routing protocol. It generates the output as a comma separated (.csv) file which is imported into Excel spreadsheet to obtain the graphs. The new wireless trace file format can be found in the tutorial provided (Appendix-B). One of the bugs in the program was calculation of the end to end delay using the following code snippet which computes the total number of received packets and the end-to-end delay in the network –

 // calculate the no. of received packets and end-end delay

if (tokens[0].equals("r") && tokens[18].equals("AGT") && tokens[34].equals("cbr")) {

 receives++;

 end_time[packet_id] = time;

 }

Initially the condition shown in bold red, i.e. tokens [18].equals ("AGT") was omitted. This caused the program to compute all the packets that were of CBR type traffic. This also included the routing packets in the network. Hence the end-to-end delay obtained was much higher than the actual end-to-end delay. Once this was fixed, correct values were obtained.

5.4 The Scenarios

The metrics used for these experiments are the same as those used for evaluating the performance of AODV in a battlefield scenario (section 4.4.2). In this section, the scenarios used are described.

Three different scenarios were considered for the experiments in which 50 nodes are distributed over the simulation area. The scenarios depict varying node densities and link changes. They are explained in the following sections –

5.4.1
 The Battlefield Scenario

The Reference Point Group Mobility (RPGM) model is used for modeling the battlefield scenario. We define the parameters in this mobility model as shown in table 5.2 –

	Parameters
	Values

	Mobility model
	RPGM

	Distribution of nodes
	10 in each group

5 groups

	Simulation Area
	2000 * 2000 m

	Probability of group change
	0.25

	Node speed
	Max speed: 5 m/s

Min speed : 1 m/s

	Maximum distance to group center
	50 m

Table 5.2: Parameters for the battlefield scenario

We consider a relatively sparsely populated set of nodes for this scenario. The total number of nodes is 50, while each node stays at a maximum of 50 meters from the group leader. We have a probability of 0.25 that there is a change in the group. For example, this may be caused due to death of a soldier or temporary movement for aiding other injured soldiers. The maximum speed of the nodes is taken as 5 m/s (which may depict military vehicles such as tanks) and minimum speed as 1 m/s (movement of soldiers).

5.4.2
 The Rescue Operation Scenario

Even for this scenario, the RPGM mobility model is used. This scenario represents groups of workers operating in a relatively small area. For example, in an avalanche rescue operation we may have set of nodes communicating within a small area. We consider a relatively denser set of nodes than the battlefield scenario. The nodes have lesser probability of changing a group (0.05) as compared to the battlefield scenario. The parameters defined for this scenario are shown in table 5.3.

	Parameters
	Values

	Mobility model
	RPGM

	Distribution of nodes
	5 in each group

10 groups

	Simulation Area
	1000 * 1000 m

	Probability of group change
	0.05

	Maximum distance to group center
	100 m

	Node speed
	Max speed: 2 m/s

Min speed : 1 m/s

Table 5.3: Parameters for the rescue operation scenario

5.4.3
 The Event Coverage Scenario

The Gauss Markov mobility model [32] was used to model the event coverage scenario. In this model we vary the degree of randomness by changing a tuning parameter. For the experiments, the speed/angle update frequency is varied to depict varying degrees of mobility within this model. The parameters are shown in table 5.4.

	Parameters
	Values

	Mobility model
	Gauss Markov Model

	No. of nodes
	50

	Simulation Area
	500 * 500 m

	Maximum speed of nodes
	5 m/s

	Angle SD
	0.5

	Speed SD
	0.5

Table 5.4: Parameters for the event coverage scenario

A higher density of nodes is considered for this scenario in a smaller simulation area. For example, this may depict the communication between press reporters in a large hall covering some event. The mobility of the nodes are also higher (5m/s) when compared to the rescue operation scenario. The angle and speed standard deviation are each chosen to be 0.5.

5.5
Results

The pause times are varied from 0 to 1000 sec for the battlefield and rescue operation scenarios. For the event coverage scenario, a parameter of the Gauss Markov mobility model called the speed or angle update frequency is varied, which is a measure of mobility. The frequency of update is varied from every 5 sec to every 60 sec. The impact of each scenario on the three metrics is studied for the three protocols chosen. The impact of each scenario on the three metrics, i.e., packet delivery fraction, end-to-end delay and the normalized routing load is studied.

5.5.1
 Impact on the Packet Delivery Fraction (PDF)

It is found that for the battlefield scenario, SEAD outperforms both DSDV and DSR protocols in terms of packet delivery fraction for pause times of 100-400 sec as shown in figure 5.2. This can be attributed to the fact that DSDV uses the weighted settling delay to reduce the number of routing table updates, which SEAD avoids. Thus SEAD typically has fresher routes at a given time than DSDV, and hence the nodes have more up-to-date routing tables, implying more no. of successfully delivered packets. For higher pause times (greater than 500 sec), all the three protocols converge to give a PDF of almost 100% because the nodes are almost static and hence the congestion in the network decreases.

[image: image41.emf]Battlefield : Pause time Vs PDF

97.00000

97.50000

98.00000

98.50000

99.00000

99.50000

100.00000

100.50000

020040060080010001200

Pause time (sec)

PDF (%)

PDF (DSDV)

PDF (SEAD)

PDF (DSR)

Figure 5.2: Pause time Vs PDF for battlefield scenario

.

[image: image42.emf]Event Coverage :

S/A Update frequency vs PDF

0

20

40

60

80

100

120

0204060

Update Frequency (sec)

PDF (%)

PDF (DSDV)

PDF (SEAD)

PDF (DSR)

Figure 5.3: Update Frequency Vs PDF for event coverage scenario

For the event coverage scenario, the effect of varying speed/angle update frequency is shown in fig.5.3. The DSR protocol is found to have very high PDF when compared to SEAD and DSDV. This is due to the fact that DSR is a reactive protocol, and hence it adapts to changes in the network better than SEAD or DSDV, which are proactive protocols. The event coverage scenario depicts a network with denser distribution of nodes and higher mobility as compared to the battlefield scenario, which shows that SEAD adapts better to link changes and mobility in a network than DSDV

When we consider the rescue operation scenario, as shown in fig.5.4, it is found that DSR again outperforms both SEAD and DSDV and gives a PDF of almost 100% at higher pause times. On the other hand, SEAD and DSDV exhibit varied performance, with SEAD outperforming DSDV for higher pause times (greater than 700).

[image: image43.emf]Rescue Operation :

Pause Time Vs PDF

93

94

95

96

97

98

99

100

101

020040060080010001200

Pause Time (sec)

PDF (%)

PDF (DSDV)

PDF (SEAD)

PDF (DSR)

Figure 5.4: Pause time Vs PDF for rescue operation

5.5.2
Impact on the Normalized Routing Load (NRL)

Figures 5.5, 5.6 and 5.7 show the impact of varying mobility on the Normalized Routing Load for the three scenarios. For all the scenarios, SEAD exhibits a higher routing overhead than DSR and DSDV. DSR has the least overhead of the three due to the fact that it is a reactive protocol and hence advertises routes only when required as opposed to the periodic routing updates in DSDV and SEAD.

It is found that as the density of nodes increases in the network, the Normalized Routing Load increases for DSDV and SEAD. This can be inferred from the figs. 2.a, b and c - the routing load for the event coverage scenario (high density of nodes) varies between 2 and 2.5 in fig.2.b, whereas for the battlefield scenario it varies between 0.8 and 1.2 as seen in fig.2.a. However, DSR exhibits stable values of routing loads across the three scenarios, again emphasizing the fact that a reactive routing protocol is more adaptive to the mobility of nodes than proactive routing protocol.

[image: image44.emf]Battlefield : Pause time Vs NRL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

020040060080010001200

Pause Time (sec)

NRL

NRL (DSDV)

NRL (SEAD)

NRL (DSR)

Figure 5.5: Pause time Vs NRL for battlefield scenario

[image: image45.emf]Event Coverage :

S/A Update frequency vs NRL

0

0.5

1

1.5

2

2.5

0204060

Update Frequency (sec)

NRL

NRL (DSDV)

NRL (SEAD)

NRL (DSR)

Figure 5.6: Update frequency Vs NRL for event coverage scenario

[image: image46.emf]Rescue Operation :

Pause Time Vs NRL

0

0.5

1

1.5

2

020040060080010001200

Pause Time (sec)

NRL

NRL (DSDV)

NRL (SEAD)

NRL (DSR)

Figure 5.7: Pause time Vs NRL for rescue operation scenario

The routing load of SEAD is much higher than DSDV and DSR across all the three scenarios due to a higher number of routing advertisements sent by the nodes in the absence of the average settling delay.

5.5.3
 Impact on the Average End-to-end Delay (AED)

Now the impact on the most important metric, the average end to end delay is studied. As shown in figures 5.8, 5.9 and 5.10, SEAD exhibits a higher delay than DSDV and DSR. This is understandable, since the computation of hash functions for authenticating the routes adds to the processing overhead at each node. Further, we find that as the mobility increases, the average end-to-end delay also increases. For a low density scenario such as the battlefield, we found that the delay is much lower for SEAD ranging between 7-8 msec (fig.5.8) as compared to a higher density scenario such as the event coverage, where it varies from 10 to 16 msec (fig.5.9).

[image: image47.emf]Battlefield : Pause Time Vs AED

0

1

2

3

4

5

6

7

8

9

020040060080010001200

Pause Time (sec)

AED (msec)

AED (DSDV)

AED (SEAD)

AED (DSR)

Figure 5.8: Pause Time Vs AED for battlefield scenario

[image: image48.emf]Event Coverage :

S/A Update frequency vs AED

0

2

4

6

8

10

12

14

16

18

0102030405060

Update Frequency (sec)

AED (msec)

AED (DSDV)

AED (SEAD)

AED (DSR)

Figure 5.9: Update frequency Vs AED for event coverage scenario

[image: image49.emf]Rescue Operation :

Pause Time Vs AED

0

2

4

6

8

10

12

020040060080010001200

Pause Time (sec)

AED (msec)

AED (DSDV)

AED (SEAD)

AED (DSR)

Figure 5.10: Pause time Vs AED for rescue operation

DSR exhibits a lower delay than DSDV and SEAD across all the three scenarios as seen from the graphs, which bolsters the fact that a reactive protocol tends to be faster than the proactive protocols under varying loads [10]. This might be important for applications such as multimedia which require a strict upper bound on the delay. Thus, DSR will be an ideal choice for such applications when security is not an issue.

5.6
Summary

This chapter describes the experiments carried out for scenario-based evaluation of three routing protocols– DSDV, DSR and SEAD. Although prior studies were conducted to evaluate these routing protocols, very few of them have considered these protocols in highly demanding real-life scenarios which may impose seemingly contradicting constraints including security, reliability, performance, and power conservation. The set of scenarios used – battlefield, rescue operation and event coverage represents a domain of critical applications. Take the battlefield scenario as an example. On one hand, it demands high security and high reliability, along with high overall performance. On the other hand, the nodes in this scenario have very limited processing capability and must conserve power.

Other than its security aspect, SEAD is unsuitable for the battlefield scenario mainly because a high value of NRL indicates higher network congestion. Besides, higher value of AED implies not only lesser throughput but also demands greater processing power for the nodes. Further, the proactive nature of SEAD causes more power consumption at each node due to more number of routing advertisements. If security is not an issue, DSR would be an ideal choice for this scenario.

The rescue operation scenario is even more demanding in terms of throughput. However, if one can afford to do without a secure protocol in this case, then DSDV would be the ideal choice for this scenario, since at any given point of time the probability of routing tables being up-to-date is more when compared to DSR.

In the event coverage scenario, it is most likely that multi-media type of traffic is exchanged between the nodes. Since SEAD exhibits high end-to-end delay it might not be suitable for such scenarios. The coverage area is the least as compared to other two scenarios in this case. Hence, DSR would be an ideal choice for this scenario due to its low value of NRL.

CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis focuses on the two most important issues in mobile ad hoc networks – performance and security. Each mobile node in a MANET acts as a router by forwarding the packets in the network. Hence, one of the challenges in the design of routing protocols is that it must be tailored to suit the dynamic nature of the nodes. The second chapter discusses some of the other challenges faced by the designers of routing protocols for MANETs. A complete understanding of these issues will help in designing efficient and effective routing protocols. It also classifies the protocols and describes a few of them.

The third chapter focuses on the second most important issue in MANETs- security. Some of the open challenges in designing a security solution are discussed, elucidating the practical implications with respect to confidentiality, integrity, availability and authenticity. The chapter then focuses on the network layer security and discusses secure routing in MANETs. It also classifies the attacks that are possible against the ordinary routing protocols and gives a threat assessment of the attacks. The second half of the chapter discusses another important aspect of security in MANETs – the key management issue. In particular, the chapter focuses on certificate-based authentication mechanisms. The requirements for an effective certificate-based authentication mechanism are identified, a survey of existing mechanisms is done and they are compared with respect to those requirements. Further, some quantitative and qualitative metrics are proposed to evaluate the mechanisms.

The next chapter discusses the simulation study of MANET routing protocols. It also gives an introduction to the ns-2 simulator environment and lists some useful utilities used for the experiments. The next section gives a brief introduction to mobility modeling of nodes in a MANET. It also discusses some of the mobility models. Then it discusses the experiments to evaluate the performance of the AODV routing protocol in a battlefield scenario. It is found that AODV performs well in a small network with a higher density and lower speed of nodes. The scenario based approach gives an idea of how the routing protocol performs when deployed in a realistic environment though it is not always possible to mimic the exact physical environment.

Finally, a set of scenario-based experiments were carried out to analyze the performance of the secure routing protocol, SEAD. The protocol was tested along with two other routing protocols, DSDV and DSR, representing table-driven and reactive routing protocols respectively. Some realistic scenarios are modeled using both entity and group mobility models. The performance analysis suggests that the security overhead caused by SEAD might not be suitable for applications which require a minimum upper bound on the latency. However, SEAD exhibits a higher packet delivery fraction than DSDV, indicating that it can be deployed in scenarios where delay in the network is acceptable.

Some of the scenarios such as battlefield are quite demanding in terms of both throughput and security. For such scenarios, we require a combination of a reactive and proactive approach. As a continuation of this research, future work could involve the study of AODV and its secure version, the SAODV [33] which was not studied in this thesis. The simulation study of attacks in a MANET and the resulting performance degradation is also an interesting area of research. Further, the key management issue is another area which needs further research. A deeper understanding of the authentication mechanisms such as the certificate-based approach and their related performance study will be very useful in designing secure applications for MANETs.

APPENDIX-A

Glossary of Terms

· MANET: Mobile Ad hoc NETwork

· Node: A node in a mobile ad hoc network is the actual device that communicates with other devices using wireless transmission.

· IEEE: Institute of Electrical and Electronic Engineers
· ALOHA: The Aloha Protocol is a layer 2 (Layer 2 is the Data Link layer of the OSI model) protocol for LAN networks with broadcast topology. It was used for the first time in the Packet Radio System of the University of Hawaii in 1970.
· CSMA/CD: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) is a network control protocol in which (a) a carrier sensing scheme is used and (b) a transmitting data station that detects another signal while transmitting a frame, stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to send that frame again.
· RTS/CTS: Request To Send / Clear To Send constitute a handshake based MAC layer mechanism in order to avoid the hidden terminal problem.
· NPDU: Network Packet Data Unit, also called as packet, represents a unit of data transfer at the network layer of the OSI model.
· RADIUS: Remote Authentication Dial In User Service is an Authentication, Authorization and Accounting (AAA) protocol for applications such as network access or IP mobility.
· EAPOL: The Extensible Authentication Protocol (EAP) is a method of conducting an authentication conversation between a user and an authentication server. Intermediate devices such as access points and proxy servers do not take part in the conversation.

· DoS: Denial of Service is an attack in which no access to the system(s) is gained, but rather availability to network services is affected.
APPENDIX-B

Tutorial for Performance Analysis of MANET Routing Protocols Using Ns-2

In this tutorial, we initially discuss the general installation and configuration of ns-2. Later on, we will discuss how to simulate and analyze the performance of routing protocols for Mobile Ad hoc networks using scenario based experiments. Finally, a list of useful resources is provided for the novice user.

1. Getting your hands wet with ns-2

The ns-2.27 is available as an all-in-one package that includes many modules. Two modules that we will discuss in this tutorial are

i. ns-2 simulator.

ii. TCL/OTcl interpreter.

1.1. Procedure for installation ns-2 over CYGWIN

 Installing ns-2 can be time-consuming for beginners, especially when building it in a Cygwin environment. The detailed instructions for downloading and building ns-2 on Cygwin can be found at Christian’s web page [34].

1.2. Using ns-2

The following are a few useful tips on using ns-2 -

· ns-2 running directory: in CYGWIN console, under directory:

· /home/administrator/ns-allinone2/ns-2.27

· Sample script files for wireless network simulations can be found under the directory:

· /home/administrator/ns-allinone2/ns-2.27 /scripts/wireless

· Setting your environment –

· In order to run your scripts from any directory, the PATH environment variables must be set. In order to do this, type the following at the command prompt as it is-

export ns_HOME=/home/administrator/ns-allinone-2.27/

export PATH=$ns_HOME/tcl8.4.5/unix:$ns_HOME/tk8.4.5/unix:$ns_HOME/

bin:$PATH

export LD_LIBRARY_PATH=$ns_HOME/tcl8.4.5/unix:$ns_HOME/tk8.4.5/unix:\

$ns_HOME/otcl-1.8:$ns_HOME/lib:$LD_LIBRARY_PATH

export TCL_LIBRARY=$ns_HOME/tcl8.4.5/library

· Data files for ns-2: The input to ns-2 is a Tcl script file. Each script file corresponds to one specific experiment scenario and has the extension .tcl

· To edit your script file use any Windows editor such as editplus, notepad, etc.

· To run the script using ns type the following at the command prompt –

% ns filename.tcl

· Some small scripts can also be run in command line mode. For this, just type ns and enter your commands line by line.

2. Procedure for Running Scenario-based Experiments

The procedure for running the scenario-based experiments are shown as a flow diagram in Fig.2 and are elaborated in the following sections

2.1. Setting up the user parameters

For any experiment, we have a set of control parameters which are specified by the user and a set of output parameters which we need to investigate upon. In the scenario based experiments, the set of input parameters are the parameters for the definition of the scenario and the specification of the traffic pattern. These parameters are defined in the following sections-

(i) Scenario parameters -

The scenario for a particular experiment is defined using the tool BonnMotion, a Java software which creates and analyses mobility scenarios. It is developed within the Communication Systems group at the Institute of Computer Science IV of the University of Bonn, Germany, where it serves as a tool for the investigation of mobile ad hoc network characteristics. The scenarios can also be exported for the network simulator ns-2 and GlomoSim/QualNet. Several mobility models are supported, namely

· the Random Waypoint model,

· the Gauss-Markov model,

· the Manhattan Grid model and

· the Reference Point Group Mobility model.

 More information on these mobility models can be found in [31]. The parameters for the scenario can be specified through the command line. For e.g.

bm -f battlefield2-b RPGM -d 100 -i 1000 -n 90 -x 2000 -y 2000 -a 10

· f: output filename

· b: RPGM mobility model

· d: 100 duration of simulation (second)

· i: 1000 number of seconds to skip from starting point

· n: 80 number of nodes

· x: 2000 width of the simulation movement field (metric)

· y: 2000 length of the simulation movement field (metric)

· a: 10 average number of node per group

 Command to convert output file to NS-2 format

bm NSFile – f filenametoconvert

For example, on running

bm NSFile – f battlefields2-b

We will have battlefields2-b.ns_movement file. This file can be used as an input to the Tcl script which is described in a later section.

(ii) Traffic pattern:

The ns –package comes with a traffic generator utility which can be found in the folder /home/administrator/ns-allinone2/ns-2.27/indep-utils/cmu-scen-gen/. This utility is used to generate trace files for specifying the type, duration and the rate of traffic flow in the network. The utility can be invoked by calling the Tcl script cbrgen.tcl as follows-

 $ ns cbrgen.tcl [list of parameters]

List of Parameters:

· Type of traffic: CBR or TCP

· Seed: starting number for random number generator

· Nr: number of node

· Nc: maximum number of connection

· Rate: number of packet per second (bit rate)

The output values can be written to a file using the > directive on the command line. This file can be used as an input to the Tcl script which is described in a later section.

3.2. The script demystified

In this section we present a walkthrough of the script which is used to run the simulation for analyzing the performance of routing protocols in MANETs. The script can be used as a skeleton to simulate any kind of routing protocol desired.

 (a) Set up the simulation and define the constants

The first step in the simulation is to define the wireless physical medium parameters and initialize the simulation.

#--

Definition of the physical layer

#--

set val(chan) Channel/WirelessChannel

set val(prop) Propagation/TwoRayGround

set val(netif) Phy/WirelessPhy

set val(mac) Mac/802_11

set val(ifq) Queue/DropTail/PriQueue

set val(ll) LL

set val(ant) Antenna/OmniAntenna

#---

Scenario parameters

#--

set val(x) 2000 ;# X dimension of the topography

set val(y) 2000 ;# Y dimension of the topography

set val(ifqlen) 100 ;# max packet in queue

set val(seed) 0.0 ;#random seed

set val(adhocRouting) [routing protocol]
set val(nn) [no. of nodes] ;# how many nodes are simulated

set val(cp) [traffic pattern file]

set val(sc) [mobility scenario file]

set val(stop) [simulation duration] ;# simulation time

(b) After setting up the initial parameters, we now create the simulator objects

#--

Set up simulator objects

#--

create simulator instance

set ns_

[new Simulator]

setup topography object

set topo
[new Topography]

create trace object for ns and nam

set tracefd
[open output trace file name w]

$ns_ use-newtrace ;# use the new wireless trace file format

set namtrace [open nam trace file name w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

define topology

$topo load_flatgrid $val(x) $val(y)

Create God

set god_ [create-god $val(nn)]

NOTE:

(i) GOD or General Operations Director is a ns-2 simulator object, which is used to store global information about the state of the environment, network, or nodes that an omniscient observer would have, but that should not be made known to any participant in the simulation.

(ii) The load_flatgrid object is used to specify a 2-D terrain. Support is available for simulation of 3D terrains for more realistic depiction of scenarios.

(c) Define node properties

Now we define the properties of a node in the ad hoc network through the following code snippet-

$ns_ node-config -adhocRouting $val(adhocRouting) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace ON

A unicast node in ns-2 has the following structure [30]–

[image: image50.png]Port

Node entry

classifier

Fig.1. Structure of a unicast node in ns-2 [from the ns manual]

By default, a node is specified as a unicast node. If a multicast protocol is desired, a separate clause has to be specified during simulator initialization-

set ns [new Simulator -multicast on]

(d) Attach the nodes to the channel and specify their movements

Create the specified number of nodes [$val(nn)] and "attach" them

to the channel.

for {set i 0} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) random-motion 0

;# disable random motion

}

Define node movement model

puts "Loading connection pattern..."

source $val(cp)

Define traffic model

puts "Loading scenario file..."

source $val(sc)

Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

50 defines the node size in nam, must adjust it according to your scenario

 # The function must be called after mobility model is defined

 # puts "Processing node $i"

 $ns_ initial_node_pos $node_($i) 50

}

NOTE: The above code attaches the nodes to the channel and specifies the movement of the nodes and the traffic flow between them. The default random motion of the nodes must be disabled.

(e) Finish up and run the simulation

#

Tell nodes when the simulation ends

#

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $val(stop).0 "$node_($i) reset";

}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

dump the initial simulation info to the trace file

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(adhocRouting)"

puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

3.3. Running a New Routing Protocol

A new routing protocol for ns-2 has to be coded in C/C++ (there is no support for Java yet). The output for this file can be incorporated into the simulator by specifying the file name in the Makefile (/home/administrator/ns-allinone-2.27/ns-2.27) and building ns-2 again. If the routing protocol involves a different packet format than what is defined in packet.h, this must also be specified in the header file. More details can be found in Marc Greis’s tutorial [36].

3.4. Post Analysis

The final but most important step in our experiment is to analyze the output from the simulation. After the simulation we obtain the trace file which contains the packet dump from the simulation. The format of this trace file for ad hoc wireless networks is as follows:

· N: Node Property

· I: IP Level Packet Information

· H: Next Hop Information

· M: MAC Level Packet Information

· P: Packet Specific Information

	Event
	Abbreviation
	Flag
	Type
	Value

	Wireless Event
	s: Send
r: Receive
d: Drop
f: Forward
	-t
	double
	Time (* For Global Setting)

	
	
	-Ni
	int
	Node ID

	
	
	-Nx
	double
	Node X Coordinate

	
	
	-Ny
	double
	Node Y Coordinate

	
	
	-Nz
	double
	Node Z Coordinate

	
	
	-Ne
	double
	Node Energy Level

	
	
	-Nl
	string
	Network trace Level (AGT, RTR, MAC, etc.)

	
	
	-Nw
	string
	Drop Reason

	
	
	-Hs
	int
	Hop source node ID

	
	
	-Hd
	int
	Hop destination Node ID, -1, -2

	
	
	-Ma
	hexadecimal
	Duration

	
	
	-Ms
	hexadecimal
	Source Ethernet Address

	
	
	-Md
	hexadecimal
	Destination Ethernet Address

	
	
	-Mt
	hexadecimal
	Ethernet Type

	
	
	-P
	string
	Packet Type (arp, dsr, imep, tora, etc.)

	
	
	-Pn
	string
	Packet Type (cbr, tcp)

Depending on the packet type, the trace may log additional information. More detailed trace file format may be found at [37]. The java program to analyze the trace files can be found in appendix C.1. This file is used to record the packets and compute the following metrics –

· Number of data packets sent

· Number of data packets received by the destination host

· Total number of routing packets

· Normalized routing load – ratio of routing packets over data packets received.

· Packet delivery fraction – ratio of received packets over sent packets in percentage.

· End to end delay – average time for a data packet delivered from host to destination.

It writes these values to a .csv file which can be imported into an Excel spread sheet to obtain the performance graphs. The output trace files may also be visualized in network animator(nam).

[image: image51.emf]Ns-2 simulator

Mobility

Scenario file

Traffic File

Trace file (.tr)

Output file (.csv)

Performance

Graphs

Network

animator file

(.nam)

Network

Animator

Topology

graphs

Output (Dsdv.o)

C/C++

compiler

Routing protocol

source code (.cc, .h)

Scenario

Parameters

Scenario

Parameters

Traffic pattern

Parameters

Tcl Script File

(e.g script.tcl)

Mobility

Scenario

generator

(Bonn Motion)

CMU Traffic

Generator

utility

(cbrgen.tcl)

Analyzer module

(.java file)

Graph drawing

software (e.g Excel)

#include <proto.h>

#include <dsragent.h>

void main()

{

 ….

}

Flow diagram for running MANET routing protocols in ns-2

Tools/utilities

Output

User Input

LEGEND

APPENDIX-C

Source Code Listings

C.1: Java program to analyze the trace files and compute performance metrics

import java.util.*;

import java.lang.*;

import java.io.*;

public class ParseTrace {

 public static void main (String args[]) {

 String s, thisLine, currLine,thisLine1;

 int j=0;

 FileReader fin,fin1;

 FileWriter fout,fout1;

 final int FILES = 0;

 final int MAX_PACKETS = 400000;

 try {

 int i=0, sends=0, receives=0;

 int drops=0,packet_id=0, highest_packet_id = 0;

 int line_count=0,current_line=0, routing_packets=0;

 int count=0;

 if (args[0].length()<1 || args[1].length()<1)

 {

 System.out.println("usage: java ParseTrace <input scenario> <protocol>");

 System.exit(0);

 }

 String outputFileName = args[0] + args[1] + ".csv";

 fout = new FileWriter(outputFileName);

 BufferedWriter op = new BufferedWriter(fout);

 for(int k=0;k<=1000;k+=50)

 {

 String inputFileName = args[0] + "-pt-" + k +"-"+args[1]+".tr";

 float pdfraction, time=0, packet_duration=0, end_to_end_delay=0;

 float avg_end_to_end_delay=0;

 float start_time[] = new float[MAX_PACKETS];

 float end_time[] = new float[MAX_PACKETS];

 float sent_packets[] = new float[MAX_PACKETS];

 float received_packets[] = new float[MAX_PACKETS];

 String tokens[] = new String[100];

 // initialize the start time

 for (i=0; i<MAX_PACKETS ; i++)

 start_time[i] = 0;

 // DataOutputStream op = new DataOutputStream(fout);

 j=0;

 sends=0; receives=0; routing_packets=0;

 highest_packet_id = 0;

 end_to_end_delay=0;

 for (i=0; i<MAX_PACKETS ; i++)

 { start_time[i] = 0; end_time[i]=0;}

 fin = new FileReader (inputFileName);

 BufferedReader br = new BufferedReader(fin);

 while ((thisLine = br.readLine()) != null) {

 // scan it line by line

 java.util.StringTokenizer st = new java.util.StringTokenizer(thisLine, " ");

 i=0;

 while(st.hasMoreElements())

 tokens[i++]= st.nextToken();

 if (tokens[0].equals("s") || tokens[0].equals("r")|| tokens[0].equals("f"))

 {

 // parse the time

 if (tokens[1].equals("-t")) time = Float.valueOf(tokens[2]).floatValue();

 // parse the packet_id

 if (tokens[39].equals("-Ii")) packet_id = Integer.valueOf(tokens[40]).intValue();

 /// calculate the sent packets

 if (tokens[0].equals("s")&&tokens[18].equals("AGT")&&tokens[34].equals("cbr"))

 sends++;

 // find the number of packets in the simulation

 if (packet_id >highest_packet_id) highest_packet_id = packet_id;

 // set the start time, only if its not already set

 if (start_time[packet_id] == 0) start_time[packet_id] = time;

 // calculate the receives and end-end delay

 if (tokens[0].equals("r") && tokens[18].equals("AGT") && tokens[34].equals("cbr"))

 {

 receives++;

 end_time[packet_id] = time;

 }

 else end_time[packet_id] = -1;

 // calculate the routing packets

 if ((tokens[0].equals("s") || tokens[0].equals("f")) && tokens[18].equals("RTR")

 && (tokens[34].equals("AODV") || tokens[34].equals("DSR")

 || tokens[34].equals("message")))

 routing_packets++;

 }

 }

 // calculate the packet duration for all the packets

 for (packet_id = 0; packet_id <= highest_packet_id ; packet_id++) {

 packet_duration = end_time[packet_id] - start_time[packet_id];

 if (packet_duration >0) end_to_end_delay += packet_duration;

 }

 // calculate the average end-end packet delay

 avg_end_to_end_delay = end_to_end_delay / (receives);

 // calculate the packet delivery fraction

 pdfraction = ((float)receives/(float)(sends))*100;

 System.out.println(" \nsends "+sends);

 System.out.println(" receives "+receives);

 System.out.println(" routing overhead (packets) "+ routing_packets);

 System.out.println(" Normalized routing load "+(float)routing_packets/(float)receives);

 System.out.println(" pdfraction " +pdfraction);

 System.out.println(" Avg End-End delay " +avg_end_to_end_delay);

 op.write(sends);

 op.write(","+receives);

 op.write(","+ routing_packets);

 op.write(","+(float)routing_packets/(float)receives);

 op.write("," +pdfraction);

 op.write("," +avg_end_to_end_delay);

 op.write('\n');

 }//end of for

 op.close();

 } //end of try

 catch (Exception e) {

 e.printStackTrace();

 } } }

C.2: Source code of SEAD (sead.cc)

This code was modified from its original version to be portable with ns version 2.27.

extern "C" {

#include <stdarg.h>

#include <float.h>

};

#include "dsdv.h"

#include "priqueue.h"

#include <random.h>

#include <cmu-trace.h>

#include <address.h>

#include <mobilenode.h>

//#define TESLA

#define DSDV_STARTUP_JITTER 2.0
// secs to jitter start of periodic activity from

// when start-dsr msg sent to agent

#define DSDV_ALMOST_NOW 0.1 // jitter used for events that should be effectively

// instantaneous but are jittered to prevent

// synchronization

#define DSDV_BROADCAST_JITTER 0.01 // jitter for all broadcast packets

#define DSDV_MIN_TUP_PERIOD 1.0 // minimum time between triggered updates

#define IP_DEF_TTL 32 // default TTTL

#define TRIGGER_UPDATE_ON_FRESH_SEQNUM

/* should the receipt of a fresh (newer) sequence number cause us

 to send a triggered update? If undef'd, we'll only trigger on

 routing metric changes */

// Returns a random number between 0 and max

static inline double

jitter (double max, int be_random_)

{

 return (be_random_ ? Random::uniform(max) : 0);

}

void DSDV_Agent::

trace (char *fmt,...)

{

 va_list ap;

 if (!tracetarget)

 return;

 va_start (ap, fmt);

 vsprintf (tracetarget->pt_->buffer (), fmt, ap);

 tracetarget->pt_->dump ();

 va_end (ap);

}

void

DSDV_Agent::tracepkt (Packet * p, double now, int me, const char *type)

{

 char buf[1024];

 unsigned char *walk = p->accessdata ();

 int ct = *(walk++);

 int seq, dst, met;

 snprintf (buf, 1024, "V%s %.5f _%d_ [%d]:", type, now, me, ct);

 while (ct--)

 {

 dst = *(walk++);

 met = *(walk++);

 seq = *(walk++);

 seq = seq << 8 | *(walk++);

 seq = seq << 8 | *(walk++);

 seq = seq << 8 | *(walk++);

 snprintf (buf, 1024, "%s (%d,%d,%d)", buf, dst, met, seq);

 }

 // Now do trigger handling.

 //trace("VTU %.5f %d", now, me);

 if (verbose_)

 trace ("%s", buf);

}

// Prints out an rtable element.

void

DSDV_Agent::output_rte(const char *prefix, rtable_ent * prte, DSDV_Agent * a)

{

 a->trace("DFU: deimplemented");

 printf("DFU: deimplemented");

 prte = 0;

 prefix = 0;

#if 0

 printf ("%s%d %d %d %d %f %f %f %f 0x%08x\n",

 prefix, prte->dst, prte->hop, prte->metric, prte->seqnum,

 prte->udtime, prte->new_seqnum_at, prte->wst, prte->changed_at,

 (unsigned int) prte->timeout_event);

 a->trace ("VTE %.5f %d %d %d %d %f %f %f %f 0x%08x",

 Scheduler::instance ().clock (), prte->dst, prte->hop, prte->metric,

 prte->seqnum, prte->udtime, prte->new_seqnum_at, prte->wst, prte->changed_at,

 prte->timeout_event);

#endif

}

class DSDVTriggerHandler : public Handler {

 public:

 DSDVTriggerHandler(DSDV_Agent *a_) { a = a_; }

 virtual void handle(Event *e);

 private:

 DSDV_Agent *a;

};

void

DSDVTriggerHandler::handle(Event *e)

 // send a triggered update (or a full update if one's needed)

{

 Scheduler & s = Scheduler::instance ();

 Time now = s.clock ();

 rtable_ent *prte;

 int update_type;
 // we want periodic (=1) or triggered (=0) update?

 Time next_possible = a->lasttup_ + DSDV_MIN_TUP_PERIOD;

 for (a->table_->InitLoop(); (prte = a->table_->NextLoop());)

 if (prte->trigger_event == e) break;

 if (!prte) {

 // did it disappear?

 delete e;

 return;

 }

 assert(prte && prte->trigger_event == e);

 if (now < next_possible)

 {

 s.schedule(a->trigger_handler, e, next_possible - now);

 a->cancelTriggersBefore(next_possible);

 return;

 }

 update_type = 0;

 Packet * p = a->makeUpdate(/*in-out*/update_type);

 if (p != NULL)

 {

 if (update_type == 1)

{ // we got a periodic update, though we only asked for triggered

 // cancel and reschedule periodic update

 s.cancel(a->periodic_callback_);

 s.schedule (a->helper_, a->periodic_callback_,

 a->perup_ * (0.75 + jitter (0.25, a->be_random_)));

 if (a->verbose_) a->tracepkt (p, now, a->myaddr_, "PU");

}

 else

{

 if (a->verbose_) a->tracepkt (p, now, a->myaddr_, "TU");

}

 assert (!HDR_CMN (p)->xmit_failure_);
// DEBUG 0x2

 s.schedule (a->target_, p, jitter(DSDV_BROADCAST_JITTER, a->be_random_));

 a->lasttup_ = now; // even if we got a full update, it still counts

 // for our last triggered update time

 }

 // free this event

 for (a->table_->InitLoop (); (prte = a->table_->NextLoop ());)

 if (prte->trigger_event && prte->trigger_event == e)

 {

prte->trigger_event = 0;

delete e;

 }

}

void

DSDV_Agent::cancelTriggersBefore(Time t)

 // Cancel any triggered events scheduled to take place *before* time

 // t (exclusive)

{

 struct rtable_ent *prte;

 Scheduler & s = Scheduler::instance ();

 for (table_->InitLoop (); (prte = table_->NextLoop ());)

 if (prte->trigger_event && prte->trigger_event->time_ < t)

 {

s.cancel(prte->trigger_event);

delete prte->trigger_event;

prte->trigger_event = 0;

 }

}

void

DSDV_Agent::needTriggeredUpdate(rtable_ent *prte, Time t)

 // if no triggered update already pending, make one so

{

 Scheduler & s = Scheduler::instance();

 Time now = Scheduler::instance().clock();

 assert(t >= now);

 if (prte->trigger_event)

 s.cancel(prte->trigger_event);

 else

 prte->trigger_event = new Event;

 s.schedule(trigger_handler, prte->trigger_event, t - now);

}

void

DSDV_Agent::helper_callback (Event * e)

{

 Scheduler & s = Scheduler::instance ();

 double now = s.clock ();

 rtable_ent *prte;

 rtable_ent *pr2;

 int update_type;
 // we want periodic (=1) or triggered (=0) update?

 //printf("Triggered handler on 0x%08x\n", e);

 // Check for periodic callback

 if (periodic_callback_ && e == periodic_callback_)

 {

 update_type = 1;

 Packet *p = makeUpdate(/*in-out*/update_type);

 if (verbose_)

{

 trace ("VPC %.5f _%d_", now, myaddr_);

 tracepkt (p, now, myaddr_, "PU");

}

 if (p) {

 assert (!HDR_CMN (p)->xmit_failure_);
// DEBUG 0x2

 // send out update packet jitter to avoid sync

 s.schedule (target_, p, jitter(DSDV_BROADCAST_JITTER, be_random_));

 }

 // put the periodic update sending callback back onto the

 // the scheduler queue for next time....

 s.schedule (helper_, periodic_callback_,

 perup_ * (0.75 + jitter (0.25, be_random_)));

 // this will take the place of any planned triggered updates

 lasttup_ = now;

 return;

 }

 // Check for timeout

 // If it was a timeout, fix the routing table.

 for (table_->InitLoop (); (prte = table_->NextLoop ());)

 if (prte->timeout_event && (prte->timeout_event == e))

 break;

 // If it was a timeout, prte will be non-NULL

 // Note that in the if we don't touch the changed_at time, so that when

 // wst is computed, it doesn't consider the infinte metric the best

 // one at that sequence number.

 if (prte)

 {

 if (verbose_)

{

 trace ("VTO %.5f _%d_ %d->%d", now, myaddr_, myaddr_, prte->dst);

 /*
 trace ("VTO %.5f _%d_ trg_sch %x on sched %x time %f", now, myaddr_,

 trigupd_scheduled,

 trigupd_scheduled ? s.lookup(trigupd_scheduled->uid_) : 0,

 trigupd_scheduled ? trigupd_scheduled->time_ : 0); */

}

 for (table_->InitLoop (); (pr2 = table_->NextLoop ());)

{

 if (pr2->hop == prte->dst && pr2->metric != BIG)

 {

 if (verbose_)

trace ("VTO %.5f _%d_ marking %d", now, myaddr_, pr2->dst);

 pr2->metric = BIG;

 pr2->advertise_ok_at = now;

 pr2->advert_metric = true;

 pr2->advert_seqnum = true;

#ifndef TESLA

 pr2->seqnum++;

#endif

 // And we have routing info to propogate.

 needTriggeredUpdate(pr2, now);

 }

}

 // OK the timeout expired, so we'll free it. No dangling pointers.

 prte->timeout_event = 0;

 }

 else

 { // unknown event on queue

 fprintf(stderr,"DFU: unknown queue event\n");

 abort();

 }

 if (e)

 delete e;

}

void

DSDV_Agent::lost_link (Packet *p)

{

 hdr_cmn *hdrc = HDR_CMN (p);

 rtable_ent *prte = table_->GetEntry (hdrc->next_hop_);

 if(use_mac_ == 0) {

 drop(p, DROP_RTR_MAC_CALLBACK);

 return;

 }

 if (verbose_ && hdrc->addr_type_ == NS_AF_INET)

 trace ("VLL %.8f %d->%d lost at %d",

 Scheduler::instance ().clock (),

 hdr_ip::access(p)->saddr(), hdr_ip::access(p)->daddr(),

 myaddr_);

 if (!use_mac_ || !prte || hdrc->addr_type_ != NS_AF_INET)

 return;

 if (verbose_)

 trace ("VLP %.5f %d:%d->%d:%d lost at %d [hop %d]",

 Scheduler::instance ().clock (),

 hdr_ip::access (p)->saddr(),

 hdr_ip::access (p)->sport(),

 hdr_ip::access (p)->daddr(),

 hdr_ip::access (p)->dport(), myaddr_, prte->dst);

 if (prte->timeout_event)

 {

 Scheduler::instance ().cancel (prte->timeout_event);

 helper_callback (prte->timeout_event);

 }

 else if (prte->metric != BIG)

 {

 assert(prte->timeout_event == 0);

 prte->timeout_event = new Event ();

 helper_callback (prte->timeout_event);

 }

 // Queue these packets up...

 recv(p, 0);

#if 0

 while (p2 = ((PriQueue *) target_)->filter (prte->dst))

 {

 if (verbose_)

 trace ("VRS %.5f %d:%d->%d:%d lost at %d", Scheduler::instance ().clock (),

 hdr_ip::access (p2)->saddr(),

 hdr_ip::access (p2)->sport(),

 hdr_ip::access (p2)->daddr(),

 hdr_ip::access (p2)->dport(), myaddr_);

 recv(p2, 0);

 }

 while (p2 = ll_queue->filter (prte->dst))

 {

 if (verbose_)

 trace ("VRS %.5f %d:%d->%d:%d lost at %d", Scheduler::instance ().clock (),

 hdr_ip::access (p2)->saddr(),

 hdr_ip::access (p2)->sport(),

 hdr_ip::access (p2)->daddr(),

 hdr_ip::access (p2)->dport(), myaddr_);

 recv (p2, 0);

 }

#endif

}

static void

mac_callback (Packet * p, void *arg)

{

 ((DSDV_Agent *) arg)->lost_link (p);

}

Packet *

DSDV_Agent::makeUpdate(int& periodic)

 // return a packet advertising the state in the routing table

 // makes a full ``periodic'' update if requested, or a ``triggered''

 // partial update if there are only a few changes and full update otherwise

 // returns with periodic = 1 if full update returned, or = 0 if partial

 // update returned

{

 Packet *p = allocpkt ();

 hdr_ip *iph = hdr_ip::access(p);

 hdr_cmn *hdrc = HDR_CMN (p);

 double now = Scheduler::instance ().clock ();

 rtable_ent *prte;

 unsigned char *walk;

 int change_count; // count of entries to go in this update

 int rtbl_sz;

// counts total entries in rt table

 int unadvertiseable;

// number of routes we can't advertise yet

 //printf("Update packet from %d [per=%d]\n", myaddr_, periodic);

 // The packet we send wants to be broadcast

 hdrc->next_hop_ = IP_BROADCAST;

 hdrc->addr_type_ = NS_AF_INET;

 iph->daddr() = IP_BROADCAST << Address::instance().nodeshift();

 iph->dport() = ROUTER_PORT;

 change_count = 0;

 rtbl_sz = 0;

 unadvertiseable = 0;

 for (table_->InitLoop ();

 (prte = table_->NextLoop ());)

 {

 rtbl_sz++;

 if ((prte->advert_seqnum || prte->advert_metric)

 && prte->advertise_ok_at <= now)

change_count++;

 if (prte->advertise_ok_at > now) unadvertiseable++;

 }

 if (change_count * 3 > rtbl_sz && change_count > 3)

 { // much of the table has changed, just do a periodic update now

 periodic = 1;

 }

 // Periodic update... increment the sequence number...

 if (periodic)

 {

 change_count = rtbl_sz - unadvertiseable;

 assert(change_count >= 1);

 /* should always be an advertiseable route for ourselves in the

 table */

#if 0

 trace("DAM %.5f _%d_ sz %d cc %d unat %d",

 now, myaddr_, rtbl_sz, change_count, unadvertiseable);

#endif

 rtable_ent rte;

 bzero(&rte, sizeof(rte));

 /* inc sequence number on any periodic update, even if we started

 off wanting to do a triggered update, b/c we're doing a real

 live periodic update now that'll take the place of our next

 periodic update */

 seqno_ += 2;

 rte.dst = myaddr_;

 //rte.hop = iph->src_;

 rte.hop = Address::instance().get_nodeaddr(iph->saddr());

 rte.metric = 0;

 rte.seqnum = seqno_;

 rte.advertise_ok_at = 0.0; // can always advert ourselves

 rte.advert_seqnum = true; // always include ourselves in Triggered Upds

 rte.changed_at = now;

 rte.new_seqnum_at = now;

 rte.wst = 0;

 rte.timeout_event = 0;

// Don't time out our localhost :)

 rte.q = 0;

// Don't buffer pkts for self!

 /* this add isn't going to increase the size of the table, since

 a route for ourselves was inserted at startup, but serves

 to refresh all the variables in the table to values set above */

 table_->AddEntry (rte);

 }

 if (change_count == 0)

 {

 Packet::free(p); // allocated by us, no drop needed

 return NULL; // nothing to advertise

 }

 /* ****** make the update packet.... ***********

 with less than 100+ nodes, an update for all nodes is less than the

 MTU, so don't bother worrying about splitting the update over

 multiple packets -dam 4/26/98 */

 assert(rtbl_sz <= (1500 / 12));

 p->allocdata ((change_count * 6) + 1);

 walk = p->accessdata ();

 *(walk++) = change_count;

#ifdef TESLA

 hdrc->size_ = change_count * 22 + IP_HDR_LEN;
// DSDV + IP

#else

 hdrc->size_ = change_count * 12 + IP_HDR_LEN;
// DSDV + IP

#endif

#if 0

 int jjj = 0;

#endif

 for (table_->InitLoop (); (prte = table_->NextLoop ());)

 {

#if 0

 jjj++;

 trace("DAM %.5f _%d_ jjj %d cc %d -dst %d ok at %f",

 now, myaddr_, jjj, change_count, prte->dst,

 prte->advertise_ok_at);

#endif

 if (periodic && prte->advertise_ok_at > now)

{ // don't send out routes that shouldn't be advertised

 // even in periodic updates

 continue;

}

 if (periodic ||

 ((prte->advert_seqnum || prte->advert_metric)

 && prte->advertise_ok_at <= now))

{ // include this rte in the advert

 if (!periodic && verbose_)

 trace ("VCT %.5f _%d_ %d", now, myaddr_, prte->dst);

 assert (prte->dst < 256 && prte->metric < 256);

 *(walk++) = prte->dst;

 *(walk++) = prte->metric;

 *(walk++) = (prte->seqnum) >> 24;

 *(walk++) = ((prte->seqnum) >> 16) & 0xFF;

 *(walk++) = ((prte->seqnum) >> 8) & 0xFF;

 *(walk++) = (prte->seqnum) & 0xFF;

 prte->last_advertised_metric = prte->metric;

 // seqnum's only need to be advertised once after they change

 prte->advert_seqnum = false; // don't need to advert seqnum again

 if (periodic)

 { // a full advert means we don't have to re-advert either

 // metrics or seqnums again until they change

 prte->advert_seqnum = false;

 prte->advert_metric = false;

 }

 change_count--;

}

 }

 assert(change_count == 0);

 return p;

}

void

DSDV_Agent::updateRoute(struct rtable_ent *old_rte,

struct rtable_ent *new_rte)

{

 int negvalue = -1;

 assert(new_rte);

 Time now = Scheduler::instance().clock();

 char buf[1024];

 snprintf (buf, 1024, "%c %.5f _%d_ (%d,%d->%d,%d->%d,%d->%d,%f)",

 (new_rte->metric != BIG

 && (!old_rte || old_rte->metric != BIG)) ? 'D' : 'U',

 now, myaddr_, new_rte->dst,

 old_rte ? old_rte->metric : negvalue, new_rte->metric,

 old_rte ? old_rte->seqnum : negvalue, new_rte->seqnum,

 old_rte ? old_rte->hop : -1, new_rte->hop,

 new_rte->advertise_ok_at);

 table_->AddEntry (*new_rte);

 if (trace_wst_)

 trace ("VWST %.12lf frm %d to %d wst %.12lf nxthp %d [of %d]",

 now, myaddr_, new_rte->dst, new_rte->wst, new_rte->hop,

 new_rte->metric);

 if (verbose_)

 trace ("VS%s", buf);

}

void

DSDV_Agent::processUpdate (Packet * p)

{

 hdr_ip *iph = HDR_IP(p);

 Scheduler & s = Scheduler::instance ();

 double now = s.clock ();

 // it's a dsdv packet

 int i;

 unsigned char *d = p->accessdata ();

 unsigned char *w = d + 1;

 rtable_ent rte;

// new rte learned from update being processed

 rtable_ent *prte;

// ptr to entry *in* routing tbl

 /* DEBUG

 printf("Received DSDV packet from %d(%d) to %d(%d) [%d(%d)]\n",

 iph->src_, iph->sport_, iph->dst_, iph->dport_, myaddr_);

 */

 for (i = *d; i > 0; i--)

 {

 bool trigger_update = false; // do we need to do a triggered update?

 nsaddr_t dst;

 prte = NULL;

 dst = *(w++);

 if ((prte = table_->GetEntry (dst)))

{

 bcopy(prte, &rte, sizeof(rte));

}

 else

{

 bzero(&rte, sizeof(rte));

}

 rte.dst = dst;

 //rte.hop = iph->src_;

 rte.hop = Address::instance().get_nodeaddr(iph->saddr());

 rte.metric = *(w++);

 rte.seqnum = *(w++);

 rte.seqnum = rte.seqnum << 8 | *(w++);

 rte.seqnum = rte.seqnum << 8 | *(w++);

 rte.seqnum = rte.seqnum << 8 | *(w++);

 rte.changed_at = now;

 if (rte.metric != BIG) rte.metric += 1;

 if (rte.dst == myaddr_)

{

 if (rte.metric == BIG && periodic_callback_)

 {

 // You have the last word on yourself...

 // Tell the world right now that I'm still here....

 // This is a CMU Monarch optimiziation to fix the

 // the problem of other nodes telling you and your neighbors

 // that you don't exist described in the paper.

 s.cancel (periodic_callback_);

 s.schedule (helper_, periodic_callback_, 0);

 }

 continue;

// don't corrupt your own routing table.

}

 /********** fill in meta data for new route ***********/

 // If it's in the table, make it the same timeout and queue.

 if (prte)

{ // we already have a route to this dst

 if (prte->seqnum == rte.seqnum)

 { // we've got an update with out a new squenece number

 // this update must have come along a different path

 // than the previous one, and is just the kind of thing

 // the weighted settling time is supposed to track.

 // this code is now a no-op left here for clarity -dam XXX

 rte.wst = prte->wst;

 rte.new_seqnum_at = prte->new_seqnum_at;

 }

 else

 { // we've got a new seq number, end the measurement period

 // for wst over the course of the old sequence number

 // and update wst with the difference between the last

 // time we changed the route (which would be when the

 // best route metric arrives) and the first time we heard

 // the sequence number that started the measurement period

 // do we care if we've missed a sequence number, such

 // that we have a wst measurement period that streches over

 // more than a single sequence number??? XXX -dam 4/20/98

#ifdef TESLA

 rte.wst = 0;

#else

 rte.wst = alpha_ * prte->wst +

(1.0 - alpha_) * (prte->changed_at - prte->new_seqnum_at);

#endif

 rte.new_seqnum_at = now;

 }

}

 else

{ // inititallize the wst for the new route

#ifdef TESLA

 rte.wst = 0;

#else

 rte.wst = wst0_;

#endif

 rte.new_seqnum_at = now;

}

 // Now that we know the wst_, we know when to update...

 if (rte.metric != BIG && (!prte || prte->metric != BIG))

rte.advertise_ok_at = now + (rte.wst * 2);

 else

rte.advertise_ok_at = now;

 /*********** decide whether to update our routing table *********/

 if (!prte)

{ // we've heard from a brand new destination

 if (rte.metric < BIG)

 {

 rte.advert_metric = true;

 trigger_update = true;

 }

 updateRoute(prte,&rte);

}

 else if (prte->seqnum == rte.seqnum)

{ // stnd dist vector case

 if (rte.metric < prte->metric)

 { // a shorter route!

 if (rte.metric == prte->last_advertised_metric)

{ // we've just gone back to a metric we've already advertised

 rte.advert_metric = false;

 trigger_update = false;

}

 else

{ // we're changing away from the last metric we announced

 rte.advert_metric = true;

 trigger_update = true;

}

 updateRoute(prte,&rte);

 }

 else

 { // ignore the longer route

 }

}

 else if (prte->seqnum < rte.seqnum)

{ // we've heard a fresher sequence number

 // we *must* believe its rt metric

 rte.advert_seqnum = true;
// we've got a new seqnum to advert

 if (rte.metric == prte->last_advertised_metric)

 { // we've just gone back to our old metric

 rte.advert_metric = false;

 }

 else

 { // we're using a metric different from our last advert

 rte.advert_metric = true;

 }

 updateRoute(prte,&rte);

#ifdef TRIGGER_UPDATE_ON_FRESH_SEQNUM

 trigger_update = true;

#else

 trigger_update = false;

#endif

}

 else if (prte->seqnum > rte.seqnum)

{ // our neighbor has older sequnum info than we do

 if (rte.metric == BIG && prte->metric != BIG)

 { // we must go forth and educate this ignorant fellow

 // about our more glorious and happy metric

 prte->advertise_ok_at = now;

 prte->advert_metric = true;

 // directly schedule a triggered update now for

 // prte, since the other logic only works with rte.*

 needTriggeredUpdate(prte,now);

 }

 else

 { // we don't care about their stale info

 }

}

 else

{

 fprintf(stderr,

 "%s DFU: unhandled adding a route entry?\n", __FILE__);

 abort();

}

 if (trigger_update)

{

 prte = table_->GetEntry (rte.dst);

 assert(prte != NULL && prte->advertise_ok_at == rte.advertise_ok_at);

 needTriggeredUpdate(prte, prte->advertise_ok_at);

}

 // see if we can send off any packets we've got queued

 if (rte.q && rte.metric != BIG)

{

 Packet *queued_p;

 while ((queued_p = rte.q->deque()))

 recv(queued_p, 0); // give the packets to ourselves to forward

 delete rte.q;

 rte.q = 0;

 table_->AddEntry(rte); // record the now zero'd queue

}

 } // end of all destination mentioned in routing update packet

 // Reschedule the timeout for this neighbor

 prte = table_->GetEntry(Address::instance().get_nodeaddr(iph->saddr()));

 if (prte)

 {

 if (prte->timeout_event)

s.cancel (prte->timeout_event);

 else

{

 prte->timeout_event = new Event ();

}

 s.schedule (helper_, prte->timeout_event, min_update_periods_ * perup_);

 }

 else

 { // If the first thing we hear from a node is a triggered update

 // that doesn't list the node sending the update as the first

 // thing in the packet (which is disrecommended by the paper)

 // we won't have a route to that node already. In order to timeout

 // the routes we just learned, we need a harmless route to keep the

 // timeout metadata straight.

 // Hi there, nice to meet you. I'll make a fake advertisement

 bzero(&rte, sizeof(rte));

 rte.dst = Address::instance().get_nodeaddr(iph->saddr());

 rte.hop = Address::instance().get_nodeaddr(iph->saddr());

 rte.metric = 1;

 rte.seqnum = 0;

 rte.advertise_ok_at = now + 604800;
// check back next week... :)

 rte.changed_at = now;

 rte.new_seqnum_at = now;

 rte.wst = wst0_;

 rte.timeout_event = new Event ();

 rte.q = 0;

 updateRoute(NULL, &rte);

 s.schedule(helper_, rte.timeout_event, min_update_periods_ * perup_);

 }

 /*

 * Freeing a routing layer packet --> don't need to

 * call drop here.

 */

 Packet::free (p);

}

int

DSDV_Agent::diff_subnet(int dst)

{

 char* dstnet = Address::instance().get_subnetaddr(dst);

 if (subnet_ != NULL) {

 if (dstnet != NULL) {

 if (strcmp(dstnet, subnet_) != 0) {

 delete [] dstnet;

 return 1;

 }

 delete [] dstnet;

 }

 }

 //assert(dstnet == NULL);

 return 0;

}

void

DSDV_Agent::forwardPacket (Packet * p)

{

 hdr_ip *iph = HDR_IP(p);

 Scheduler & s = Scheduler::instance ();

 double now = s.clock ();

 // We should route it.

 hdr_cmn *hdrc = HDR_CMN (p);

 int dst;

 rtable_ent *prte;

 // set direction of pkt to -1 , i.e downward

 hdrc->direction() = hdr_cmn::DOWN;

 // if the destination is outside mobilenode's domain

 // forward it to base_stn node

 // Note: pkt is not buffered if route to base_stn is unknown

 dst = Address::instance().get_nodeaddr(iph->daddr());

 if (diff_subnet(iph->daddr())) {

 prte = table_->GetEntry (dst);

 if (prte && prte->metric != BIG)

 goto send;

 //int dst = (node_->base_stn())->address();

 dst = node_->base_stn();

 prte = table_->GetEntry (dst);

 if (prte && prte->metric != BIG)

 goto send;

 else {

 //drop pkt with warning

 fprintf(stderr, "warning: Route to base_stn not known: dropping pkt\n");

 Packet::free(p);

 return;

 }

 }

 prte = table_->GetEntry (dst);

 // trace("VDEBUG-RX %d %d->%d %d %d 0x%08x 0x%08x %d %d",

 // myaddr_, iph->src_, iph->dst_, hdrc->next_hop_, hdrc->addr_type_,

 // hdrc->xmit_failure_, hdrc->xmit_failure_data_,

 // hdrc->num_forwards_, hdrc->opt_num_forwards);

 if (prte && prte->metric != BIG)

 {

 goto send;

 }

 else if (prte)

 { /* must queue the packet */

 if (!prte->q)

{

 prte->q = new PacketQueue();

}

 prte->q->enque(p);

 trace ("VBP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr(),

 iph->sport(), iph->daddr(), iph->dport());

 while (prte->q->length() > MAX_QUEUE_LENGTH)

drop (prte->q->deque(), DROP_RTR_QFULL);

 }

 else

 { // Brand new destination

 rtable_ent rte;

 double now = s.clock();

 bzero(&rte, sizeof(rte));

 rte.dst = dst;

 rte.hop = dst;

 rte.metric = BIG;

 rte.seqnum = 0;

 rte.advertise_ok_at = now + 604800;
// check back next week... :)

 rte.changed_at = now;

 rte.new_seqnum_at = now;
// was now + wst0_, why??? XXX -dam

 rte.wst = 0; //wst0_;

 rte.timeout_event = 0;

 rte.q = new PacketQueue();

 rte.q->enque(p);

 assert (rte.q->length() == 1 && 1 <= MAX_QUEUE_LENGTH);

 table_->AddEntry(rte);

 if (verbose_)

 trace ("VBP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_,

 iph->saddr(), iph->sport(), iph->daddr(), iph->dport());

 return;

 }

 send:

hdrc->addr_type_ = NS_AF_INET;

 hdrc->xmit_failure_ = mac_callback;

 hdrc->xmit_failure_data_ = this;

 if (prte->metric > 1)

hdrc->next_hop_ = prte->hop;

 else

hdrc->next_hop_ = dst;

 if (verbose_)

 trace ("Routing pkts outside domain: \

VFP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr(),

 iph->sport(), iph->daddr(), iph->dport());

 //trace("VDEBUG-TX %d %d->%d %d %d 0x%08x 0x%08x %d %d",

 // myaddr_, iph->src_, iph->dst_, hdrc->next_hop_, hdrc->addr_type_,

 // hdrc->xmit_failure_, hdrc->xmit_failure_data_,

 // hdrc->num_forwards_, hdrc->opt_num_forwards);

 assert (!HDR_CMN(p)->xmit_failure_ ||

 HDR_CMN(p)->xmit_failure_ == mac_callback); // DEBUG 0x2

 target_->recv(p, (Handler *)0);

 return;

}

void

DSDV_Agent::recv (Packet * p, Handler *)

{

 hdr_ip *iph = HDR_IP(p);

 hdr_cmn *cmh = HDR_CMN(p);

 int src = Address::instance().get_nodeaddr(iph->saddr());

 int dst = cmh->next_hop();

 /*

 * Must be a packet I'm originating...

 */

 if(src == myaddr_ && cmh->num_forwards() == 0) {

 /*

 * Add the IP Header

 */

 cmh->size() += IP_HDR_LEN;

 iph->ttl_ = IP_DEF_TTL;

 }

 /*

 * I received a packet that I sent. Probably

 * a routing loop.

 */

 else if(src == myaddr_) {

 drop(p, DROP_RTR_ROUTE_LOOP);

 return;

 }

 /*

 * Packet I'm forwarding...

 */

 else {

 /*

 * Check the TTL. If it is zero, then discard.

 */

 if(--iph->ttl_ == 0) {

 drop(p, DROP_RTR_TTL);

 return;

 }

 }

 if ((src != myaddr_) && (iph->dport() == ROUTER_PORT))

 {

 processUpdate(p);

 }

 else

 {

 forwardPacket(p);

 }

}

static class DSDVClass:public TclClass

{

 public:

 DSDVClass ():TclClass ("Agent/DSDV")

 {

 }

 TclObject *create (int, const char *const *)

 {

 return (new DSDV_Agent ());

 }

} class_dsdv;

DSDV_Agent::DSDV_Agent (): Agent (PT_MESSAGE), ll_queue (0), seqno_ (0),

 myaddr_ (0), periodic_callback_ (0), be_random_ (1),

 use_mac_ (0), verbose_ (0), trace_wst_ (0), lasttup_ (-10),

 alpha_ (0.875), wst0_ (6), perup_ (15),

 min_update_periods_ (3)
// constants

 {

 table_ = new RoutingTable ();

 helper_ = new DSDV_Helper (this);

 trigger_handler = new DSDVTriggerHandler(this);

 bind_time ("wst0_", &wst0_);

 bind_time ("perup_", &perup_);

 bind ("use_mac_", &use_mac_);

 bind ("be_random_", &be_random_);

 bind ("alpha_", &alpha_);

 bind ("min_update_periods_", &min_update_periods_);

 bind ("myaddr_", &myaddr_);

 bind ("verbose_", &verbose_);

 bind ("trace_wst_", &trace_wst_);

#ifdef TESLA

 wst0_ = 0;

#endif

}

void

DSDV_Agent::startUp()

{

 Time now = Scheduler::instance().clock();

 subnet_ = Address::instance().get_subnetaddr(myaddr_);

 //DEBUG

 address = Address::instance().print_nodeaddr(myaddr_);

 rtable_ent rte;

 bzero(&rte, sizeof(rte));

 rte.dst = myaddr_;

 rte.hop = myaddr_;

 rte.metric = 0;

 rte.seqnum = seqno_;

 seqno_ += 2;

 rte.advertise_ok_at = 0.0; // can always advert ourselves

 rte.advert_seqnum = true;

 rte.advert_metric = true;

 rte.changed_at = now;

 rte.new_seqnum_at = now;

 rte.wst = 0;

 rte.timeout_event = 0;

// Don't time out our localhost :)

 rte.q = 0;

// Don't buffer pkts for self!

 table_->AddEntry (rte);

 // kick off periodic advertisments

 periodic_callback_ = new Event ();

 Scheduler::instance ().schedule (helper_,

 periodic_callback_,

 jitter (DSDV_STARTUP_JITTER, be_random_));

}

int

DSDV_Agent::command (int argc, const char *const *argv)

{

 if (argc == 2)

 {

 if (strcmp (argv[1], "start-dsdv") == 0)

{

 startUp();

 return (TCL_OK);

}

 else if (strcmp (argv[1], "dumprtab") == 0)

{

 Packet *p2 = allocpkt ();

 hdr_ip *iph2 = HDR_IP(p2);

 rtable_ent *prte;

 printf ("Table Dump %d[%d]\n----------------------------------\n",

 iph2->saddr(), iph2->sport());

trace ("VTD %.5f %d:%d\n", Scheduler::instance ().clock (),

 iph2->saddr(), iph2->sport());

 /*

 * Freeing a routing layer packet --> don't need to

 * call drop here.

 */

Packet::free (p2);

 for (table_->InitLoop (); (prte = table_->NextLoop ());)

 output_rte ("\t", prte, this);

 printf ("\n");

 return (TCL_OK);

}

 else if (strcasecmp (argv[1], "ll-queue") == 0)

{

if (!(ll_queue = (PriQueue *) TclObject::lookup (argv[2])))

 {

 fprintf (stderr, "DSDV_Agent: ll-queue lookup of %s failed\n", argv[2]);

 return TCL_ERROR;

 }

 return TCL_OK;

}

 }

 else if (argc == 3)

 {

 if (strcasecmp (argv[1], "addr") == 0) {

 int temp;

 temp = Address::instance().str2addr(argv[2]);

 myaddr_ = temp;

 return TCL_OK;

 }

 TclObject *obj;

 if ((obj = TclObject::lookup (argv[2])) == 0)

 {

 fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__, argv[1],

 argv[2]);

 return TCL_ERROR;

 }

 if (strcasecmp (argv[1], "tracetarget") == 0)

{

 TclObject *obj;

if ((obj = TclObject::lookup (argv[2])) == 0)

 {

 fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__, argv[1],

 argv[2]);

 return TCL_ERROR;

 }

 tracetarget = (Trace *) obj;

 return TCL_OK;

}

 else if (strcasecmp (argv[1], "node") == 0) {

 node_ = (MobileNode*) obj;

 return TCL_OK;

 }

 else if (strcasecmp (argv[1], "port-dmux") == 0) {

 port_dmux_ = (NsObject *) obj;

 return TCL_OK;

 }

 }

return (Agent::command (argc, argv));

}

REFERENCES

[1] C. Siva Ram Murthy, B.S. Manoj, “Ad Hoc Wireless Networks : Architectures and Protocols”, Prentice Hall Publishers, May 2004, ISBN 013147023X

[2] C.-K. Toh, “Ad Hoc Mobile Wireless Networks: Protocols and Systems”, Prentice Hall publishers, December 2001, ISBN 0130078174

[3] C. Perkins and P. Bhagwat, Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In Proc. of the ACM SIGCOMM, October 1994. http://www.cs.umass.edu/~mcorner/courses/691M/papers/perkins.pdf

[4] Shree Murthy, J.J. Garcia-Luna-Aveces, "A Routing Protocol for Packet Radio Networks," Proc. ACM International Conference on Mobile Computing and Networking, pp. 86-95, November, 1995
 http://www.pdos.lcs.mit.edu/decouto/papers/dube97.pdf

[5] C.-C. Chiang, “Routing in Clustered Multihop, Mobile Wireless Networks with

Fading Channel,” Proc. IEEE SICON ’97, Apr. 1997, pp. 197–211.

http://www.ics.uci.edu/~atm/adhoc/paper-collection/gerla-routing-clustered-sicon97.pdf
[6] [online] The Secan Lab, University of Luxembourg, Luxembourg.

http://wiki.uni.lu/secan-lab/Distributed+Bellman-Ford.html
[7] [online] The Secan Lab, University of Luxembourg, Luxembourg.

http://wiki.uni.lu/secan-lab/Count-To-Infinity+Problem.html
[8] D B. Johnson, D A. Maltz, and Y. Hu, "The dynamic source routing protocol for mobile ad hoc network," Internet-Draft, April 2003.
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt
[9] C.E. Perkins, E. Royer, and S.R. Das, "Ad hoc on demand distance vector (AODV) routing," Internet Draft, March 2000.
http://www.ietf.org/internetdrafts /draft-ietf-manet-aodv-05.txt
[10] Samir R. Das, Charles E. Perkins, Elizabeth M. Royer and Mahesh K. Marina. "Performance Comparison of Two On-demand Routing Protocols for Ad hoc Networks." IEEE Personal Communications Magazine special issue on Ad hoc Networking, February 2001, p. 16-28. http://www.ronai.hu/././library/Performance_comparison_of_AODV_and_DSR-Perkins.pdf
[11] David B Johnson and David A Maltz. “Dynamic source routing in ad hoc wireless networks”. In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer Academic Publishers, 1996.

[12] Haas Z.J, “ A new routing protocol for the reconfigurable wireless network”. In Proceedings of the 1997 IEEE 6th International Conference on Universal Personal Communications, ICUPC '97, San Diego, CA, October 1997; pp. 562 -- 566.
http://www.ics.uci.edu/~atm/adhoc/paper-collection/haas-routing-protocol-icupc97.ps.gz
[13] Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Clay Shields and Elizabeth M. Belding royer. "A Secure Routing Protocol for Ad Hoc Networks" (ARAN) In International Conference on Network Protocols (ICNP), Paris, France, November 2002. www.cs.ucsb.edu/~kimaya/icnp2002.pdf
[14] Stefano Basagni, Marco Conti, Silvia Giordano, Ivan Stojmenovic, “Mobile Ad Hoc Networking”, ISBN: 0-471-37313-3, Wiley-IEEE Press: Chapter 12: Ad hoc networks Security Pietro Michiardi, Refik Molva
http://www.eurecom.fr/~michiard/pub/michiardi-adhoc.pdf
[15] Hongmei Deng, Wei Li, and Dharma P. Agrawal, “Routing Security in Wireless Ad Hoc Network,” IEEE Communications Magzine, vol. 40, no. 10, October 2002.
[16] Yih-Chun Hu, David B. Johnson, Adrian Perrig. "SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks", Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA '02), pp: 3-13, Jun 2002. http://www.cs.colorado.edu/~rhan/CSCI_7143_001_Fall_2002/Papers/Perrig2002_wmcsa02.pdf
[17] Yih-Chun Hu, Adrian Perrig, David B. Johnson. "Ariadne: A secure On-Demand Routing Protocol for Ad hoc Networks" MobiCom 2002, September 23-28, 2002, Atlanta, Georgia, USA.
http://lambda.cs.yale.edu/cs425/doc/ariadne.pdf
[18] A. Perrig, R. Canetti, D. Tygar, and D. Song, "The TESLA Broadcast Authentication Protocol," Cryptobytes,, Volume 5, No. 2 (RSA Laboratories, Summer/Fall 2002), pp. 2-13.
http://www.rsasecurity.com/rsalabs/cryptobytes/
[19] P. Papadimitratos and Z. Haas. "Secure routing for mobile ad hoc networks" (SRP) SCS Communication Networks and Distributed Systems Modeling and Simulation Conference, pp. 27--31, January 2002.
http://wnl.ece.cornell.edu/Publications/cnds02.pdf
[20] Internet X.509 Public Key Infrastructure Certificate and CRL Profile - RFC 2459

[21] S. Capkun, L. Buttyan and J-P Hubaux. "Self-Organized Public-Key Management for Mobile Ad Hoc Networks ", IEEE Transactions on Mobile Computing, Vol. 2, No. 1, Jan-Mar 2003, pp. 52-64

[22] Weihong Wang, Ying Zhu, Baochun Li. "Self-Managed Heterogeneous Certification in Mobile Ad Hoc Networks ", in the Proceedings of IEEE Vehicular Technology Conference (VTC 2003), Orlando, Florida, 10/6-9, 2003.

[23] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. "Providing robust and Ubiquitous Security support for Mobile Ad Hoc Networks ", Proceedings of the 9th International conference on Network Protocols (ICNP), Riverside, California, USA, November 11-14 2001.

[24] Edith C. H. Ngai and Michael R. Lyu. "Trust- and Clustering-Based Authentication Services in Mobile Ad Hoc Networks", 24th International Conference on Distributed Computing Systems Workshops - W4: MDC (ICDCSW'04), Hachioji, Tokyo, Japan, 3/23-24, 2004.

[25] L. Zhou and Z. Haas. “Securing Ad Hoc Networks”, IEEE Network magazine, special issue on networking security, Vol. 13, No. 6, November/December 1999.

[26] Matei Ciobanu Morogan, Sead Muftic. “Certificate Management in Ad Hoc Networks”, 2003 Symposium on Applications and the Internet Workshops (SAINT'03 Workshops), January 27 - 31, 2003, pp. 337.

[27] F. Stajano and R. J. Anderson. “The resurrecting duckling: Security issues for ad-hoc wireless networks” In 7th Security Protocols Workshop, volume 1796 of Lecture Notes in Computer Science, Cambridge, United Kingdom, 1999. Springer-Verlag, Berlin Germany.

[28] Dirk Balfanz, D. K. Smetters, Paul Stewart and H. Chi Wong: "Talking To Strangers: Authentication in Ad-Hoc Wireless Networks", Symposium on Network and Distributed Systems Security (NDSS'02), Xerox Palo Alto Research Center, Palo Alto, USA, 2002.

[29] P. Zimmerman. “The Official PGP Users guide”, MIT Press, 1995, ISBN 0-262-74017-6.

[30] K. Fall and K. Varadhan, “The NS Manual”, The VINT Project, UC Berkeley, January 2002.

[31] T. Camp, J. Boleng, and V. Davies. “A Survey of Mobility Models for Ad Hoc Network Research", in Wireless Communication & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, vol. 2, no. 5, 2002.

[32] Ben Liang, Zygmunt J. Haas, “Predictive distance-based mobility management for multidimensional PCS networks”, IEEE/ACM Transactions on Networking (TON), Volume 11 , Issue 5 , Pages: 718 – 732, October 2003

[33] J. Yoon, M. Liu, and B. Noble. "Random waypoint considered harmful," in Proc. of IEEE INFOCOM '03, vol. 2, March 2003, pp. 1312—1321.

[34] Manel Guerrero Zapata, “Secure Ad hoc On-Demand Distance Vector Routing”, ACM Mobile Computing and Communications Review (MC2R), 6(3):106--107, July 2002.

[35] [online] Building ns-2 on Cygwin [versions 2.27, 2.26 and 2.1b9a(*)]
http://www.isi.edu/nsnam/ns/ns-cygwin-old.html
[36] [online] Marc Greis’s ns-2 tutorial

 http://www.isi.edu/nsnam/ns/tutorial/nsindex.html

[37] [online] NS-2 trace file format

http://k-lug.org/~griswold/NS2/ns2-trace-formats.html#wireless:new
Figure 1.3: A Mobile ad hoc network

(a)

(b)

RADIUS

Server

EAPOL

Certificate server

Access Point C

Access Point B

Access Point A

C1

Tunnel

D

C4

B

Q

A2

M

S

Ku

Kv

Cert (u, v)

ns-2 ver. 2.27

Cygwin 4.3.2

WindowsXP

� EMBED Equation.3 ���

Fig.2 Flow diagram for running MANET protocols in ns-2

PAGE
141

_1172771341.vsd
1

5

4

6

3

7

2

Source node

Destination Node

Selected Route

Broken Link

Route Error (RERR)

_1173091217.vsd
1

5

4

6

3

7

2

Source node

Destination Node

Network link

RREQ

RREP

Duplicate packets

_1173984498.vsd
S

A

B

C

D

X

M

S

A

B

C

D

X

M

_1173993062.vsd
A

B

C

D

1

1

1

B

C

D

1

2

3

Number of hops to node A

A

B

C

D

1

1

1

B

C

D

3

2

3

Number of hops to node A

B

C

D

3

4

3

B

C

D

5

4

5

....

_1174688131.vsd
MANET Routing Protocols

Table driven/ Proactive

Hybrid

On-Demand Driven/ Reactive

DSDV
WRP
CGSR
.....

ZRP

DSR
AODV
TORA
....

_1174322835.vsd
Attacks on MANET routing protocols

Attacks using Fabrication

Attacks using impersonation

Attacks using modification

Redirection by modified route sequence numbers
Redirection with modified hop counts
DoS with modified source routes
Tunneling

Forming loops by
 spoofing

Falsifying route errors in AODV and DSR
Route cache poisoning in DSR

Special Attacks

Worm hole Attack
Black hole attack

_1173984889.vsd
A

D

A

B

C

E

...

X

M

A

D

B

C

E

...

X

M

D

B

C

E

X

M

...

_1173442158.unknown

_1173442217.unknown

_1173457469.unknown

_1173441905.unknown

_1172836595.vsd
1

5

4

6

3

7

2

Source node

Destination Node

Route from 1-7

Route Error (RERR)

Route cache : 6-7

Broken Link

_1172855637.vsd
1

5

4

6

3

7

2

Routing zone of radius 1 for node 2

_1172833776.vsd
1

5

4

6

3

7

2

Source node

Destination Node

Route Request (RREQ)

Route Reply (RREP)

Route cache : 6-7

_1172593496.vsd

_1172666159.vsd
1

5

4

6

3

7

2

Source node

Destination Node

_1172668692.vsd
1

5

4

6

3

7

2

Source node

7

Node 7 moves

Broken link

_1172594555.vsd

_1172251492.unknown

_1172510072.vsd
`

_1172523550.vsd

_1172262861.unknown

_1172509518.vsd

_1172251906.unknown

_1159020391.unknown

_1163380011.unknown

_1171269302.vsd
Scenario Parameters

Traffic pattern Parameters

CMU Traffic Generator utility (cbrgen.tcl)

Ns-2 simulator

Scenario Parameters

Tcl Script File
(e.g script.tcl)

Mobility Scenario file

Traffic File

Trace file (.tr)

Graph drawing software (e.g Excel)

Output file (.csv)

#include <proto.h>
#include <dsragent.h>
void main()
{
 ….
}

Performance Graphs

Network animator file (.nam)

Network Animator

Topology graphs

Output (Dsdv.o)

C/C++ compiler

Routing protocol source code (.cc, .h)

Flow diagram for running MANET routing protocols in ns-2

Analyzer module (.java file)

Tools/utilities

Mobility Scenario generator
(Bonn Motion)

Output

User Input

LEGEND

_1159020383.unknown

_1159019869.unknown

