
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 1 3

Guest Editors’ Introduction

he most common approach to software development today is code-
and-fix programming hacking. In this approach, a development team
begins with a general idea of what they want to build. They might have
a formal specification, but probably not. They use whatever combina-

tion of informal design, code, debug, and test methodologies suits them.
Programmers write a little code and run it to see whether it works. If it doesn’t work,
they change it until it does. The code-and-fix approach is far from the state of the
art in software development. It costs more, takes longer, and produces lower-quality
software than other approaches; its main advantage is that it requires little techni-
cal or managerial training. Leading organizations have known and used effective
software development practices for decades, but the gap between average practice
and best practice in software is enormous.

If one end of the software development competency spectrum is occupied by

Steve McConnell, Construx Software

Leonard Tripp, The Boeing Company

For many programmers, so f t ware deve lopment cons is ts o f
hack ing. A s we mature, i t i s t ime to fo l low the example o f
other pro fess iona l d i sc ip l ines, to put the e ngi ne e r i ng in
sof t ware engineer ing. The guest ed i tors look at what has
b een done and what s t i l l needs to b e done to es tab l i sh our
profess ion .

T

Professional Software
Engineering:
Fact or Fiction?

1 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

code-and-fix development, the other end is occu-
pied by software engineering “the application of
a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of
software,” as defined by IEEE Standard 610.12.

Recently, the software engineering community
has seen encouraging developments related to es-
tablishing, supporting, and disseminating a higher
standard of conduct for practicing software devel-
opers. This special issue focuses on recent develop-
ments that support a true profession of software
engineering.

ELEMENTS OF A PROFESSION

In 1996, Gary Ford and Norman E. Gibbs pub-
lished a report titled A Mature Profession of Software
Engineering. They studied several well-established
professions, including medicine, law, engineering,
and accounting. They observed that professionals
in other fields follow a professional-development
path that is fairly similar, regardless of their specific
discipline. Figure 1 shows these characteristics.

Mature professions include the following
elements:

♦ Initial professional education
♦ Accreditation
♦ Skills development
♦ Certification
♦ Licensing

♦ Professional development
♦ Professional societies
♦ Code of ethics

Initial professional education
Professionals generally begin their careers by

completing a university program in their chosen
field, such as medicine, engineering, or law.

The predominate form of education in soft-
ware has been an undergraduate degree in com-
puter science. Recently, progress has been made
in defining undergraduate programs in software
engineering. The term software engineering is
often misunderstood, and one way to clarify it is
to differentiate software engineering from com-
puter science. In “Software Engineering Programs
Are Not Computer Science Programs,” reprinted
in this issue, David L. Parnas describes the differ-
ences between the two, presenting the clearest
explanation of software engineering we have
read.

Accreditation
University programs are accredited by oversight

bodies that determine whether each program pro-
vides adequate education. This assures that, as long
as professionals graduate from accredited programs,
they will start their professional lives with the knowl-
edge they need to perform effectively.

Accreditation is becoming increasingly impor-
tant as software engineering programs proliferate.
Since the Rochester Institute of Technology initiated
the first undergraduate software engineering pro-
gram in the US in 1996, many universities have ini-
tiated similar programs including Auburn University,
the Milwaukee School of Engineering, Monmouth
University, and Montana Tech. In Canada, Concordia
University, McMaster University, Memorial Univ-
ersity of Newfoundland, and the University of
Ottawa offer bachelor’s programs. Several other
North American universities are actively consider-
ing adding programs. At least 13 universities in the
UK and six more in Australia offer undergraduate
programs.

Accreditation of these programs is not yet in
place. Gerald Engel describes what accreditation cri-
teria will look like in “Program Criteria for Accred-
itation of Academic Programs in Software Engin-
eering.” The work Engel describes will significantly
influence the education and the skills that the first
wave of undergraduate software engineering stu-
dents will take into industry.

Individual professional
development

Initial professional
education Accreditation

Infrastructure support
for the profession

Professional
society influences

Code of ethics

Professional
development

Skills
development

Professional
societies

One or both:
Certification Licensing

Full professional status

Figure 1. Professional development follows most or all of these

basic steps in all well-established professions.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 1 5

Skills development
For most professions, education alone is not suf-

ficient to develop full professional capabilities.
Nascent professionals need practice applying their
knowledge before they are prepared to take primary
responsibility for performing work in their field. In
the US, physicians generally have a three-year resi-
dency. Certified Public Accountants (CPAs) must
work one year for a board-approved organization
before receiving their licenses. Professional engi-
neers must have at least four years of work experi-
ence. Requiring some kind of apprenticeship assures
that people who enter a profession have practice
working at a satisfactory competence level.

What knowledge is important to a professional
software engineer? The IEEE Computer Society and
the ACM have been working to define that knowl-
edge. Pierre Bourque, Robert Dupuis, Alan Abran,
James W. Moore, and Leonard Tripp describe the
work in progress in “The Guide to the Software
Engineering Body of Knowledge.” This project is
tremendously important, because the body of
knowledge will affect university curricula and stan-
dards for licensing and certification exams.

Certification
After completion of education and skills devel-

opment, a professional must pass one or more
exams that assure he or she has attained a minimum
level of knowledge. Doctors take board exams.
Accountants take CPA exams. Professional engineers
take a Fundamentals of Engineering exam at college
graduation and then take an engineering specialty
exam about four years later. Some professions re-
quire recertification from time to time. Certification
is a voluntary process that helps the public deter-
mine who is fully qualified to participate in a pro-
fession and who isn’t.

In the UK, the Institution of Electrical Engineers
conducts a software engineering certificate pro-
gram and the British Computer Society has a pro-
fessional development scheme. The Australian
Computer Society offers a certification program in
information technology with a subspecialty in soft-
ware engineering. In the US, there is no certifica-
tion program in software engineering per se. The
Institute for Certification of Computing Profes-
sionals offers a Certified Computing Professional
designation. The American Society for Quality of-
fers programs for Certified Software Test Engineer
and Certified Software Quality Engineer. And nu-
merous companies including Microsoft, Novell, and

R E S O U R C E S

PRINT RESOURCES

Gary Ford and Norman E. Gibbs, A Mature Profession of Software

Engineering, Software Engineering Inst., Carnegie Mellon Univ., Tech.

Report CMU/SEI-96-TR-004, 1996. This technical report contains a de-

tailed study of the elements that make up mature professions and an

analysis of software engineering’s maturity. This report is download-

able from the SEI’s Web site at http://www.sei.cmu.edu.

Steve McConnell, After the Gold Rush: Creating a True Profession of

Software Engineering, Microsoft Press, Redmond, Wash., 1999. This book

is a set of essays that argue in favor of treating software development

as an engineering discipline. It discusses the state of the art in software

engineering and the work needed to establish software engineering

as a profession.

WEB RESOURCES

Software Engineering Coordinating Committee: http://computer.

org/tab/swecc. This Web site contains current information related to

the IEEE Computer Society and ACM initiative to define software engi-

neering as a profession.

Software Engineering Body of Knowledge: http://www.swebok.org.

This Web site describes the work in progress on the software engi-

neering body of knowledge project.

Software engineering code of ethics: http://computer.org/

tab/swecc/code.htm. This Web site contains the text of both the short

and long versions of the Software Engineering Code of Ethics and

Professional Conduct adopted by the IEEE Computer Society and ACM.

Association of Professional Engineers and Geoscientists of British

Columbia Software Engineering: http://www.apeg.bc.ca/cse/

cse.htm. This site contains white papers related to British Columbia’s

software engineering educational and licensing initiatives.

The Texas Board of Professional Engineers software engineering li-

censing page: http://www.main.org/peboard/sofupdt.htm. This de-

scribes Texas’s program for licensing professional engineers in software.

ACM’s position on software licensing: http://www.acm.org/

serving/se_policy. This site contains the ACM’s position on licensing of

software engineers.

University of Texas’s professional-ethics site: http://www.cs.utexas.

edu/users/ethics/professional.html. This site contains numerous links

related to ethics, standards, education, and professionalism in software

engineering and computer science.

ACADEMIC PROGRAMS

Rochester Institute of Technology: http://www.se.rit.edu. This site de-

scribes RIT’s program, including detailed class listings and descriptions.

McMaster University:http://www.cas.mcmaster.ca/cas/undergraduate/

SEprogrammes.html. This site describes McMaster’s program, in-

cluding detailed class listings and descriptions.

1 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Apple Computer provide various certifications re-
lated to their products.

The IEEE Computer Society began developing a
certification program for software engineering prac-
titioners in June 1999; it expects certification to be
available in the third quarter of 2000.

Licensing
Licensing is similar to certification except that it is

mandatory and it is administered by a government
authority. Many exciting developments are occurring
in this area. Texas began licensing professional soft-
ware engineers in 1998. (For more information, see
IEEE Software’s report “License to Code,” by John
Charles (Sept./Oct. 1998) and his recent update
“Software Engineering Licensing Weathers Challenge”
in Sept./Oct. 1999.) In June 1999, British Columbia
began licensing professional engineers in software,
and in September 1999, Ontario followed suit.

What are the implications of licensing? Is it a
good idea? Licensing evokes strong reactions rang-
ing from “Of course!” to “Hell, no!”For one view, see
John Speed’s article, “What Do You Mean I Can’t Call
Myself a Software Engineer?” Speed is a leader in
promoting the licensing of professional engineers
with a specialty in software engineering in the US.
The article provides key information about the li-
censing process in the US. The basic principles of li-

censing apply in other countries. The article side-
bars describe licensing policies in British Columbia,
Ontario, and the United Kingdom. For other views of
licensing, see this issue’s Point/ Counterpoint by
Dennis Frailey and Tom DeMarco. Frailey sees li-
censing as a necessary and valuable step in assur-
ing professional competency; DeMarco compares it
to a Soviet bureaucracy.

Professional development
Ongoing professional education maintains or im-

proves workers’knowledge and skills after they begin
professional practice. Requirements for professional
development tend to be strongest in professions that
work with a rapidly changing body of technical knowl-
edge. Medicine is perhaps the most notable because
of the constant improvements in drugs, therapies,
medical equipment, and diagnosis and treatment pro-
cedures. After a professional’s initial education and
skills development are complete, ongoing education
requirements help to assure a minimum competency
level throughout the professional’s career.

One aspect of professional development is learn-
ing appropriate standards of practice. The IEEE has
been active in developing software engineering stan-
dards for more than 20 years, and collectively the IEEE
standards make up a kind of practice standard for
software engineers. James W. Moore describes the
IEEE’s recent efforts in “An Integrated Collection of
Software Engineering Standards.”Moore’s article is a
useful introduction to these tremendously valuable
development resources, and it includes an interest-
ing update about the IEEE’s recent efforts to unify its
software engineering standards.

Professional societies
Professionals see themselves as part of a com-

munity of like-minded individuals who put their pro-
fessional standards above their individual self-inter-
est or their employer’s self-interest. In the beginning,
professional societies usually promote the exchange
of knowledge. Over time, their function evolves to
include defining certification criteria, managing cer-
tification programs, establishing accreditation stan-
dards, and defining codes of ethics and disciplinary
action for violations of those codes.

The IEEE Computer Society and the ACM have
been active in defining the profession of software en-
gineering. This work is orchestrated by the Software
Engineering Coordinating Committee (SWECC). For
more details, see the sidebar “Software Engineering
Coordinating Committee.”

H O W Y O U C A N P A R T I C I P A T E

IEEE Computer Society Web site: http://

computer.org. This site contains links to commit-

tees, conferences, and other opportunities to be

professionally active in software engineering

through the IEEE Computer Society.

ACM Web site: http://www.acm.org. This site

contains links relating to participating in software

engineering through the ACM.

Construx Software’s software engineering pro-

fessionalism site: http://www.construx.com/

profession. This site contains information about

how you can participate in the emerging profes-

sion of software engineering. It contains pointers

to current information about university courses,

state-by-state licensing initiatives, and other re-

sources. It also contains detailed reading lists for

self-study programs in software engineering.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 1 7

Code of ethics
Each profession has a code of ethics to ensure

that its practitioners behave responsibly. The code
states not just what its practitioners actually do, but
what they should do. Professionals can be ejected
from their professional societies or lose their license
to practice for violating the code of ethics.
Adherence to a recognized code of conduct helps
professionals feel they belong to a well-regarded
community, and enforcement of ethics standards
helps maintain a minimum level of conduct.

In 1998, the IEEE Computer Society and the ACM
adopted a Software Engineering Code of Ethics and
Professional Practice. Don Gotterbarn describes the
code in “How the New Software Engineering Code of
Ethics Affects You.”This code supports a mature pro-
fession of software engineering by explicitly defin-
ing the ethical obligations of a software engineer.

ONWARD AND UPWARD

Developments underway will affect all software
developers directly or indirectly. Are they positive?
In our opinion, they are both positive and necessary
to raise the level of software development compe-
tence. But many of these developments are still in
their early stages, and interested software practi-
tioners can contribute to defining the body of knowl-
edge, establishing curriculum standards, shaping li-
censing policies, and many other areas.

IEEE Software’s mission is to “Build the Com-
munity of Leading Software Practitioners.”We hope
that you will help us in this mission by taking an ac-
tive role in development of software engineering
as a profession, including sending us your com-
ments about the initiatives described in this issue
(software@computer.org). ❖

1 8 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

T H E S O F T W A R E E N G I N E E R I N G
C O O R D I N A T I N G C O M M I T T E E

SWECC (the official name is “SWEcc”) was formed 1 January

1999 to foster the evolution of software engineering as a pro-

fessional computing discipline. This committee replaced a prior

ad hoc committee, the Joint IEEE Computer Society and ACM

Steering Committee for the Establishment of Software Engin-

eering as a Profession, formed by the two societies in January

1994. The committee’s purpose is “to establish the appropriate

sets(s) of criteria and norms for professional practice of software

engineering upon which industrial decisions, professional cer-

tification, and educational curricula can be based.”

Since 1993, the IEEE Computer Society and the ACM have

been actively promoting software engineering as a profession,

notably through their involvement in the IEEE Computer Society

and ACM, the original joint committee, and now SWECC.

Achieving consensus by the profession on a core body of knowl-

edge is a key milestone in all disciplines and has been identi-

fied by the SWECC as crucial for the evolution of software engi-

neering toward a professional status. The development of the

Guide to the Software Engineering Body of Knowledge will fol-

low a complete survey to clarify the knowledge, skills, and scope

of responsibilities required of software engineers of various

types and seniority, with designated knowledge area special-

ists responsible for identifying the topics within the assigned

knowledge area and identifying reference material for each

topic. Visit http://www.swebok.org for information and recent

developments.

The Joint Task Force on Software Engineering Ethics and

Professional Practice, under the auspices of the original joint

committee, developed a Software Engineering Code of Ethics

and Professional Practice that documents software engineers’

ethical and professional responsibilities and obligations. Both

the IEEE Computer Society and ACM approved the code in 1998.

The task force in charge of the document has circulated it and is

collecting comments from software engineering professionals

around the world. Visit http://www.computer.org/tab/swecc/

SWCEPP.htm for more information on this document and its task

force.

In 1997, the Software Engineering Education Project was cre-

ated, also under the auspices of the original joint committee,

with a mandate to develop curriculum recommendations for

software engineering programs. The project chose to work on

undergraduate education first and began by developing ac-

creditation criteria appropriate for undergraduate programs. The

intent was to use accreditation criteria as a specification for de-

veloping a model undergraduate program. This effort was com-

pleted in mid 1998, and the IEEE Computer Society and ACM ap-

proved the accreditation criteria in November 1998. For more

information and a summary of the project results, visit http://

www.computer.org/tab/swecc/sweep.htm.

A not-too-surprising lesson learned by all volunteers in-

volved in the first few years of this committee’s activity was

that things take a lot more time and effort than predicted.

These early achievements are just a small but important step

in the definition of a new profession, the full definition of

which will take a few more years to achieve. The committee’s

future plans include continued and expanded work on the

software engineering body of knowledge, education, and the

code of ethics. To get involved or find more information, visit

the IEEE Computer Society and ACM SWECC Web site, http://

www.computer.org/tab/swecc.

Steve McConnell is president and chief software en-
gineer of Construx Software, where he divides his
time between leading custom software projects,
teaching classes, and writing books and articles. He
is also Editor-in-Chief of IEEE Software. He is the au-
thor of Code Complete, Rapid Development, and
Software Project Survival Guide. In 1998, readers of
Software Development magazine named him one
of the three most influential people in the software

industry, along with Bill Gates and Linus Torvalds. His most recent book
is After the Gold Rush: Creating a True Profession of Software Engineering
(Microsoft Press, 1999). He is on the panel of experts that advises the
Software Engineering Body of Knowledge project and is a member of
the IEEE and ACM. He can be reached at stevemcc@construx.com.

About the Authors

Leonard Tripp is a technical fellow in software engi-
neering at The Boeing Company. He is the 1999
president of the IEEE Computer Society. His inter-
ests include engineering practices, standards, and
tools for safety-critical airborne digital systems. He
is the chair of the Industry Advisory Board for the
Software Engineering Body of Knowledge project
and the IEEE Computer Society and ACM Software
Engineering Coordinating Committee (SWECC). He

served as head of the US delegation to the international committee for
software engineering standards from 1993 to 1998. His IEEE Computer
Society awards include the 1996 Hans Karlsson Award for outstanding
leadership in standards development, a Meritorious Service Award, and
an Outstanding Contribution Award. He can be reached at l.tripp@com-
puter.org.

