
1

TURTLEBOT2 Guide I Motion ROS Indigo 2/19/2016

2

Contents
Contents .. 2
MEET TURTLEBOT ... 3

Kobuki Motors, Gyro for Movement .. 4

Control Method ... 4

ROS TERMS ... 6
TURN ON TURTLEBOT – Cheat Sheet .. 7

Keyboard Control of TurtleBot.. 7
Python Script to Control TurtleBot ... 7

TurtleBot Dashboard and Joystick Control.. 8

Dashboard .. 8
Joystick xBOX 360 ... 8

ROS TERMINAL WINDOW COMMANDS ... 9

rospack Commands help, list ... 9
rosnode, rostopic help .. 10
Nodes and Topics of Interest for TurtleBot .. 11

TOPICS for TurtleBot .. 12
RQT_GRAPH for TURTLEBOT – Nodes and Topics .. 14
KEYBOARD CONTROL OF TURTLEBOT .. 16

ROS NODES, TOPICS, MESSAGES AND SERVICES USING TURTLEBOT KEYBOARD.... 17
Messages ... 17

RQT_GRAPH with /turtlebot_teleop_keyboard Node ... 20
Rostopic echo /odom/pose/pose .. 25
RE-START MINIMAL LAUNCH SET X=0, Y=0. OUTPUT TO TEXT FILE 25

ROS SERVICES with TURTLEBOT ... 27

PYTHON SCRIPT TO CONTROL TURTLEBOT ... 30
PYTHON AFTER MINIMAL LAUNCH ... 31

RQT_PLOT NEEDS TO BE TESTED -THIS IS FOR TURTLESIM 38

DASHBOARD OF TURTLEBOT ... 40
JOYSTICK xBOX 360... 41

PARAMETER SERVER .. 43
rosparam help .. 43

ROSBAG SAVE DATA NEEDS TO BE TESTED – THIS IS FOR TURTLESIM 47

Recording a subset of the data ... 53

The limitations of rosbag record/play... 55
APPENDIX I REFERENCES NEEDS UPDATING - REFERENCES ... 56

3

MEET TURTLEBOT

From the Clearpath site:

TurtleBot 2 is the world’s most popular low cost, open source robot for education and research. This

second generation personal robot is equipped with a powerful Kobuki robot base, a dual-core netbook,

ASUS Xtion PRO Sensor (Might be a Kinect) and a gyroscope. All components have been seamlessly

integrated to deliver an out-of-the-box development platform. Tap into the thriving open source ROS

developer community and get started learning robotics on day one.

http://www.clearpathrobotics.com/turtlebot-2-open-source-robot/

Here are the specifications from the website:

 TurtleBot

TM

PERSONAL ROBOTICS PLATFORMSIDEFRONTTOP354 mm[14 in]420 mm[16.5 in]89mm[3.5 in]155mm[6 in]208mm[8 in]354 mm[14 in]317.5

mm[12.5 in]354 mm[14 in]

TECHNICAL SPECIFICATIONS
SIZE AND WEIGHT
EXTERNAL DIMENSIONS (L x W x H) 354 x 354 x 420 mm (14.0 x 14.0 x 16.5 in)

WEIGHT 6.3 kg (13.9 lb)

WHEELS (Diameter) 76 mm (3 in)

GROUND CLEARANCE 15 mm (0.6 in)

SPEED AND PERFORMANCE
MAX. PAYLOAD 5 kg (11 lb)

MAX. SPEED 0.65 m/s (2.1 ft/s)

MAX. ROTATIONAL SPEED 180°/S

BATTERY AND POWER SYSTEM
STANDARD BATTERY 2200 mAh Li-Ion

EXTENDED BATTERY 4400 mAh Li-Ion

USER POWER 5 V and 19V (1A), 12 V (1.5A), 12V (5A)

SENSORS
3D VISION SENSOR (ASUS Xtion PRO LIVE)* Color Camera: 640px x 480px, 30 fps. Depth Camera: 640px 480px, 30 fps

ENCORDERS 25700 cps 11.5 ticks/mm

RATE GYRO 110 deg/s Factory Calibrated

AUXILIARY SENSORS 3x forward bump, 3x cliff, 2x wheel drop

COMPUTER (subject to change)
MEMORY 4 GB

SCREEN 11.6in (1366x768)

PROCESSOR Intel Core i3-4010U

GRAPHICS Intel® HD Graphics

INTERNAL HARD DRIVE 500 GB

WIFI 802.11n

OPTICAL DRIVE Not Applicable

*Check this – One of our TurtleBots has a Kinect.

http://www.clearpathrobotics.com/turtlebot-2-open-source-robot/

4

One good application of turtlebot - Follower

https://www.youtube.com/watch?v=roZ6DV8lNZc

Introducing Yujin Robot's Kobuki

https://www.youtube.com/watch?v=t-KTHkbUwrU

Yujin Robot Innovation Published on Aug 5, 2014

Kobuki Motors, Gyro for Movement

http://kobuki.yujinrobot.com/documentation/

http://kobuki.yujinrobot.com/wiki/motor-details/

 Brushed DC Motor

 Motor Manufacturer: Standard Motor

 Part Name: RP385-ST-2060

 Rated Voltage: 12 V

 Rated Load: 5 mN·m

 No Load Current: 210 mA

 No Load Speed: 9960 rpm ± 15%

 Rated Load Current: 750 mA

 Rated Load Speed: 8800 rpm ± 15%

 Armature Resistance: 1.5506 Ω at 25°C

 Armature Inductance: 1.51 mH

 Torque Constant(Kt): 10.913 mN·m/A

 Velocity Constant(Kv): 830 rpm/V

 Stall Current: 6.1 A

 Stall Torque: 33 mN·m

Control Method

 Driven by voltage source(H-bridge)

 Controlled by Pulse-width modulation(PWM)

You want details – See my website Ceng 6533
 RobotControl MotorControl_1 MotorControl_2 Bode_Tracking
 StepperMotorDesign RobotPWMcontrol

Need – some experience with Laplace Transforms
http://kobuki.yujinrobot.com/wiki/gyro-details/

https://www.youtube.com/watch?v=roZ6DV8lNZc
https://www.youtube.com/watch?v=t-KTHkbUwrU
https://www.youtube.com/channel/UCWZwHcm0ojaS_Qe_dx7qYKA
http://kobuki.yujinrobot.com/documentation/
http://kobuki.yujinrobot.com/wiki/motor-details/
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_WEB6533_Sp2014/controlforRobotics.pdf
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_webRobotics2015/MotorControlIscan0001.pdf
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_webRobotics2015/MotorControlIIscan0001.pdf
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_webRobotics2015/MotorControlBodeTrackingscan0001.pdf
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_WEB6533_Sp2014/stepperMotorKlafterscan0001.pdf
http://sceweb.sce.uhcl.edu/harman/CENG6533/0_WEB6533_Sp2014/eshedControlscan0001.pdf
http://kobuki.yujinrobot.com/wiki/gyro-details/

5

 3-Axis Digital Gyroscope

 Manufacturer : STMicroelectronics

 Part Name : L3G4200D

 Measurement Range: ±250 deg/s

 Yaw axis is factory calibrated within the range of ±20 deg/s to ±100 deg/s

This graph shows the average heading error per revolution of gyro, when robot rotates with a given

velocity.

This graph shows the position error of fused odometry with gyro, when robot moves along a square path. Robot
moved with 0.1 m/s on the line segment and rotated with 30 deg/s on the corner.

Number of turns of square path Angular Error [deg]

0.5 0.47

1.5 1.99

2.5 3.18

This table shows the calculated angular error, when robot arrived at the diagonally opposite corner from the
starting point(0.0, 0.0).

http://www.st.com/web/catalog/sense_power/FM89/SC1288/PF250373

6

ROS TERMS

Before a beginner even opens a web tutorial or book or sees a ROS video, it is helpful to learn a few

terms that pertain to ROS. These terms describe the main components of a ROS system.

Table 1. ROS Useful Terms

Item Type Comment

Repositories A software repository

is a storage location

from which software

packages may be

retrieved and installed

on a computer.

http://en.wikipedia.org/wiki/Software_repository

GitHub is used to download the ROS packages used by

the Baxter system:

http://sdk.rethinkrobotics.com/wiki/Workstation_Setup

Packages Contains files to allow

execution of ROS

programs

A package typically contains source files and executable

scripts that can be BASH, Python, or other code.

Manifest

Package.xml

Information about a

package

The manifest defines properties about the package such

as the package name, version numbers, authors,

maintainers, and dependencies on other packages.

ROS Master Registers the name and

location of each node.

Allows nodes to communicate. Nodes can be in different

computers.

Parameter

Server

Data types that define

certain information for

nodes.

Certain nodes require parameters to define aspects of the

node.

Nodes Processes that execute

commands.

Executable code written in Python or C++ usually.

Python nodes use the client library rospy

Topic Name of a message. For example, Baxter’s cameras “publish” the image they

receive as a topic with a name that indicates it is a

camera image.

Services Allows communication

between nodes.

Used by nodes to communicate with other nodes and

request a response.

Messages Data sent between

nodes.

Messages are “published” by a node and “subscribed to”

by another node.

Bags Data storage for

messages.

Used to save and playback data such as sensor data.

Table 1 ROS Terms

In Summary:

 The Master maintains a table of node’s network addresses

 The Parameter Server stores configuration data for a node in a network database

 Nodes are software modules that are sending or receiving messages

 Topics define the name of a stream of messages and messages on a topic have the same data

type.

http://en.wikipedia.org/wiki/Package_(package_management_system)
http://en.wikipedia.org/wiki/Package_(package_management_system)
http://en.wikipedia.org/wiki/Software_repository
http://sdk.rethinkrobotics.com/wiki/Workstation_Setup

7

TURN ON TURTLEBOT – Cheat Sheet
 1. POWER TO NETBOOK
 2. LOG ON NETBOOK PASS: TB

 3. POWER ON BASE (Button to right of base)

 4. CONNECT NETBOOK TO BASE (lower left of base)

 5. CONNECT TO BUFFALO ROUTER

ON WORKSTATION FOR KEYBOARD TELEOP

 1. CONNECT TO BUFFALO ROUTER (System settings > Network)

 2. Terminal 1: $. .turtlebot 2 (Set up HP210 Netbook as ROS MASTER)
#This makes TurtleBot the Master through the Buffalo Router 2/8/2016

export ROS_MASTER_URI=http://192.168.11.110:11311 # TurtleBot2 IP as MASTER

export ROS_IP=192.168.11.120 # Wireless IP on Workstation

3. Terminal 1 $ ssh turtlebot-0877@192.168.11.110

 Enter Password turtlebot@192.168.11.1110's password: xxxxxxxx

 4. $ roslaunch turtlebot_bringup minimal.launch

$. .turtlebot2

#This makes TurtleBot the Master through the Buffalo Router 2/08/2016 $. .turtlebot2

export ROS_MASTER_URI=http://192.168.11.110:11311 # TurtleBot 2 IP as MASTER

export ROS_IP=192.168.11.120 # Wireless IP on Workstation uNCommented out 1/25/2016

Keyboard Control of TurtleBot

After Minimal Launch

Terminal 2

1$. .turtlebot2

2. $ roslaunch turtlebot_teleop keyboard_teleop.launch

Control Your Turtlebot!

Moving around:

 u i o

 j k l

 m , .

q/z : increase/decrease max speeds by 10%

w/x : increase/decrease only linear speed by 10%

e/c : increase/decrease only angular speed by 10%

space key, k : force stop

anything else : stop smoothly

CTRL-C to quit

Python Script to Control TurtleBot

TERMINAL 2

$. .turtlebot2
$ python python_GoInCircle.py

8

TurtleBot Dashboard and Joystick Control

Dashboard

$. .turtlebot2

$ ssh turtlebot-0877@192.168.11.110 password: turtlebot

turtlebot@turtlebot-0428:~$ roslaunch turtlebot_bringup minimal.launch

TERMINAL 2

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ roslaunch turtlebot_dashboard turtlebot_dashboard.launch

Joystick xBOX 360

$. .turtlebot2

$ ssh turtlebot-0877@192.168.11.110 password: turtlebot

turtlebot@turtlebot-0428:~$ roslaunch turtlebot_bringup minimal.launch

TERMINAL 2 JOYSTICK

tlharmanphd@D125-43873:~$. .turtlebot2

 tlharmanphd@D125-43873:~$ roslaunch turtlebot_teleop xbox360_teleop.launch

Hold the “dead-man” button

mailto:turtlebot-0877@192.168.11.110

9

ROS TERMINAL WINDOW COMMANDS

rospack Commands help, list

tlharmanphd@D125-43873:/$ rospack help
USAGE: rospack <command> [options] [package]

 Allowed commands:

 help

 cflags-only-I [--deps-only] [package]

 cflags-only-other [--deps-only] [package]

 depends [package] (alias: deps)

 depends-indent [package] (alias: deps-indent)

 depends-manifests [package] (alias: deps-manifests)

 depends-msgsrv [package] (alias: deps-msgsrv)

 depends-on [package]

 depends-on1 [package]

 depends-why --target=<target> [package] (alias: deps-why)

 depends1 [package] (alias: deps1)

 export [--deps-only] --lang=<lang> --attrib=<attrib> [package]

 find [package]

 langs

 libs-only-L [--deps-only] [package]

 libs-only-l [--deps-only] [package]

 libs-only-other [--deps-only] [package]

 list

 list-duplicates

 list-names

 plugins --attrib=<attrib> [--top=<toppkg>] [package]

 profile [--length=<length>] [--zombie-only]

 rosdep [package] (alias: rosdeps)

 rosdep0 [package] (alias: rosdeps0)

 vcs [package]

 vcs0 [package]

 Extra options:

 -q Quiets error reports.

 If [package] is omitted, the current working directory

 is used (if it contains a manifest.xml).

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ rospack list turtle <Tab> <Tab>

turtle_actionlib turtlebot_navigation

turtlebot_actions turtlebot_panorama

turtlebot_bringup turtlebot_rapps

turtlebot_calibration turtlebot_rviz_launchers

turtlebot_capabilities turtlebot_stage

turtlebot_dashboard turtlebot_stdr

turtlebot_description turtlebot_teleop

turtlebot_follower turtlesim

turtlebot_gazebo turtle_tf

turtlebot_interactive_markers turtle_tf2

turtlebot_msgs

10

http://wiki.ros.org/Robots/TurtleBot

The packages were downloaded thus:

$ sudo apt-get install ros-indigo-turtlebot ros-indigo-turtlebot-apps ros-indigo-turtlebot-interactions

ros-indigo-turtlebot-simulator ros-indigo-kobuki-ftdi ros-indigo-rocon-remocon ros-indigo-rocon-qt-

library ros-indigo-ar-track-alvar-msgs

rosnode, rostopic help

tlharmanphd@D125-43873:~$ rosnode help
rosnode is a command-line tool for printing information about ROS Nodes.

Commands: Example
 rosnode ping test connectivity to node ($ rosnode ping <node>)
 rosnode list list active nodes

 rosnode info print information about node ($ rosnode info <node>)
 rosnode machine list nodes running on a particular machine or list machines

 rosnode kill kill a running node

 rosnode cleanup purge registration information of unreachable nodes

Type rosnode <command> -h for more detailed usage, e.g. 'rosnode ping -h'

tlharmanphd@D125-43873:~$ rosnode list -h
Usage: rosnode list

Options:

 -h, --help show this help message and exit

 -u list XML-RPC URIs

 -a, --all list all information rosnode kill kill a running node

 rosnode cleanup purge registration information of unreachable nodes

tlharmanphd@D125-43873:/$ rostopic help
rostopic is a command-line tool for printing information about ROS Topics.

Commands:

 rostopic bw display bandwidth used by topic

 rostopic echo print messages to screen

 rostopic find find topics by type

 rostopic hz display publishing rate of topic

 rostopic info print information about active topic

 rostopic list list active topics

 rostopic pub publish data to topic

 rostopic type print topic type

Type rostopic <command> -h for more detailed usage, e.g. 'rostopic echo -h'

http://wiki.ros.org/Robots/TurtleBot

11

Nodes and Topics of Interest for TurtleBot

tlharmanphd@D125-43873:~$ rosnode list

/app_manager

/bumper2pointcloud

/capability_server

/capability_server_nodelet_manager

/cmd_vel_mux

/diagnostic_aggregator

/interactions

/master

/mobile_base

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

/turtlebot_laptop_battery

/zeroconf/zeroconf

http://wiki.ros.org/nodelet

Nodelets are designed to provide a way to run multiple algorithms on a single machine, in a single process,
without incurring copy costs when passing messages intraprocess. roscpp has optimizations to do zero
copy pointer passing between publish and subscribe calls within the same node. To do this nodelets allow
dynamic loading of classes into the same node, however they provide simple separate namespaces such
that the nodelet acts like a seperate node, despite being in the same process. This has been extended
further in that it is dynamically loadable at runtime using pluginlib.

I think this means that the nodelets are more efficient than nodes.

Here is an example from https://cse.sc.edu/~jokane/teaching/574/notes-turtlebot.pdf

CSCE574 – Robotics Spring 2014 – Notes on Turtlebot robots

He uses the multiplexing capability of TurtleBot control as an example.

From O’Kane: 3.2.2 Velocity Command Multiplexer

As you control the robot, you may have several different nodes that want to publish cmd vel messages.

Which one should have control of the robot? If everyone publishes directly to cmd vel, then the robot

will always try to execute the command in the most recent message it has received. This is obviously not a
good solution if, for example, you’d like to take teleoperative control of the robot to override automatically
generated commands sent by your software.

ROS provides a solution to this problem in the form of a multiplexer node. Each node that wants to

send movement commands to the robot, instead of publishing directly to cmd vel, publishes messages on

one of three different topics:

• /cmd vel mux/input/navi

• /cmd vel mux/input/teleop

• /cmd vel mux/input/safety controller

(Note that these specific topic names are determined by a configuration file; there’s nothing stopping you

from changing them, or adding others if you like.) When messages arrive on any of these topics, cmdvel

mux decides which should take the highest priority, and forwards the corresponding messages to the

http://wiki.ros.org/nodelet
http://wiki.ros.org/pluginlib
https://cse.sc.edu/~jokane/teaching/574/notes-turtlebot.pdf

12

turtlebot node via cmd vel.

Here’s a launch file entry for this node:
<node

pkg="nodelet"

type="nodelet"

name="cmd_vel_mux"

args="standalone yocs_cmd_vel_mux/CmdVelMuxNodelet"

>

<param name="yaml_cfg_file" value="$(find turtlebot_bringup)/param/mux.yaml"/>

CSCE574 – Spring 2014 Notes on Turtlebot robots 9 of 13
<remap from="cmd_vel_mux/input/teleop" to="turtlebot_teleop/cmd_vel"/>

<remap from="cmd_vel_mux/output" to="cmd_vel"/>

</node>

There are three noteworthy things here.

1. First and most noticeably, the cmd vel mux functionality is actually provided by a nodelet rather than

a full-fledged node. The idea is, when nodes are very small and very simple, to reduce overhead by
combining the functionality of several nodes into a single process. Usually, we would first start a
nodelet manager, and then load one or more nodelets into that manager. In this case, however, there’s

only one nodelet, so we can launch it as a standalone node, without a separate manager.

2. Second, we must provide a configuration file, which defines the input and output topics for the multiplexer,
along with a priority level and a timeout for each input topic. You might understand the role

of cmd vel mux better if you examine this configuration file.

3. Finally, we use several remap entries to modify the topic names used by this node, to ensure that the

correct connections are made with the other nodes.

3.2.3 Teleoperation Node

Once the turtlebot node and the cmd vel mux nodes are running, you can teleoperate the robot using

a command like this on your workstation:

$ rosrun turtlebot_teleop turtlebot_teleop_key

See Jason O’Kanes website. He has a free book:

A Gentle Introduction to ROS

TOPICS for TurtleBot

tlharmanphd@D125-43873:~$ rostopic list

/capability_server/bonds

/capability_server/events

/cmd_vel_mux/active

/cmd_vel_mux/input/navi

/cmd_vel_mux/input/safety_controller

/cmd_vel_mux/input/teleop

/cmd_vel_mux/parameter_descriptions

/cmd_vel_mux/parameter_updates

.

13

/joint_states

/laptop_charge

/mobile_base/commands/controller_info

/mobile_base/commands/digital_output

/mobile_base/commands/external_power

/mobile_base/commands/led1

/mobile_base/commands/led2

/mobile_base/commands/motor_power

/mobile_base/commands/reset_odometry

/mobile_base/commands/sound

/mobile_base/commands/velocity

/mobile_base/controller_info

/mobile_base/debug/raw_control_command

/mobile_base/debug/raw_data_command

/mobile_base/debug/raw_data_stream

/mobile_base/events/bumper

/mobile_base/events/button

/mobile_base/events/cliff

/mobile_base/events/digital_input

/mobile_base/events/power_system

/mobile_base/events/robot_state

/mobile_base/events/wheel_drop

/mobile_base/sensors/bumper_pointcloud

/mobile_base/sensors/core

/mobile_base/sensors/dock_ir

/mobile_base/sensors/imu_data

/mobile_base/sensors/imu_data_raw

/mobile_base/version_info

/mobile_base_nodelet_manager/bond

/odom

.

/tf

/tf_static

/turtlebot/incompatible_rapp_list

/turtlebot/rapp_list

/turtlebot/status

14

RQT_GRAPH for TURTLEBOT – Nodes and Topics

tlharmanphd@D125-43873:~$ rqt_graph

15

Let's look at a useful node - cmd_vel_mux

tlharmanphd@D125-43873:~$ rosnode info cmd_vel_mux

--
Node [/cmd_vel_mux]

Publications:

 * /rosout [rosgraph_msgs/Log]

 * /mobile_base_nodelet_manager/bond [bond/Status]

Subscriptions:

 * /mobile_base_nodelet_manager/bond [bond/Status]

Services:

 * /cmd_vel_mux/set_logger_level

 * /cmd_vel_mux/get_loggers

contacting node http://192.168.11.110:58142/ ...

Pid: 3215

Connections:
 * topic: /rosout

 * to: /rosout

 * direction: outbound
 * transport: TCPROS

 * topic: /mobile_base_nodelet_manager/bond

 * to: /cmd_vel_mux
 * direction: outbound

 * transport: INTRAPROCESS

 * topic: /mobile_base_nodelet_manager/bond
 * to: /mobile_base_nodelet_manager

 * direction: outbound

 * transport: TCPROS
 * topic: /mobile_base_nodelet_manager/bond

 * to: /bumper2pointcloud

 * direction: outbound
 * transport: TCPROS

 * topic: /mobile_base_nodelet_manager/bond

 * to: /mobile_base

 * direction: outbound

 * transport: TCPROS

 * topic: /mobile_base_nodelet_manager/bond
 * to: /cmd_vel_mux (http://192.168.11.110:58142/)

 * direction: inbound

 * transport: INTRAPROCESS
 * topic: /mobile_base_nodelet_manager/bond

 * to: /mobile_base_nodelet_manager (http://192.168.11.110:58917/)

 * direction: inbound
 * transport: TCPROS

 * topic: /mobile_base_nodelet_manager/bond
 * to: /bumper2pointcloud (http://192.168.11.110:48128/)

 * direction: inbound

 * transport: TCPROS
 * topic: /mobile_base_nodelet_manager/bond

 * to: /mobile_base (http://192.168.11.110:41037/)

 * direction: inbound
 * transport: TCPROS

Kill A Node

You can close the window with the node /hello defined or kill the node with rosnode kill <node>

command.

tlharmanphd@D125-43873:~$ rosnode kill -h

Usage: rosnode kill [node]...

Options:

 -h, --help show this help message and exit

 -a, --all kill all nodes

16

To check running process use $ps –ef to see all the processes running.

KEYBOARD CONTROL OF TURTLEBOT

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ roslaunch turtlebot_teleop keyboard_teleop.launch
... logging to /home/tlharmanphd/.ros/log/4d34d82a-d5c8-11e5-978f-8019347aeccf/roslaunch-D125-43873-

1655.log

Checking log directory for disk usage. This may take awhile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.11.120:38615/

SUMMARY

========

PARAMETERS

 * /rosdistro: indigo

 * /rosversion: 1.11.16

 * /turtlebot_teleop_keyboard/scale_angular: 1.5

 * /turtlebot_teleop_keyboard/scale_linear: 0.5

NODES

 / turtlebot_teleop_keyboard (turtlebot_teleop/turtlebot_teleop_key)

ROS_MASTER_URI=http://192.168.11.110:11311

core service [/rosout] found

process[turtlebot_teleop_keyboard-1]: started with pid [1664]

Control Your Turtlebot!

Moving around:

 u i o

 j k l

 m , .

q/z : increase/decrease max speeds by 10%

w/x : increase/decrease only linear speed by 10%

e/c : increase/decrease only angular speed by 10%

space key, k : force stop

anything else : stop smoothly

CTRL-C to quit

currently: speed 0.2 turn

17

ROS NODES, TOPICS, MESSAGES AND SERVICES USING TURTLEBOT KEYBOARD

To clear the screen of the long list:

tlharmanphd@D125-43873:~$ clear

/turtlebot_teleop_keyboard NODE

tlharmanphd@D125-43873:~$ rosnode info turtlebot_teleop_keyboard
--

Node [/turtlebot_teleop_keyboard]

Publications:

 * /rosout [rosgraph_msgs/Log]

 * /cmd_vel_mux/input/teleop [geometry_msgs/Twist]

Subscriptions: None

Services:

 * /turtlebot_teleop_keyboard/set_logger_level

 * /turtlebot_teleop_keyboard/get_loggers

contacting node http://192.168.11.120:50071/ ...

Pid: 1664

Connections:

 * topic: /cmd_vel_mux/input/teleop

 * to: /mobile_base_nodelet_manager

 * direction: outbound

 * transport: TCPROS

 * topic: /rosout

 * to: /rosout

 * direction: outbound

 * transport: TCPROS

The node /turtlebot_teleop_keyboard publishes two topics but subscribes to none because
the keyboard outputs data. The services for the node are listed also. These refer to logging. The

topic /cmd_vel_mux/input/teleop with the message type geometry_msgs/Twist will be studied in

detail.

Messages

tlharmanphd@D125-43873:/$ rosmsg help
rosmsg is a command-line tool for displaying information about ROS Message types.

Commands:

 rosmsg show Show message description

 rosmsg list List all messages

 rosmsg md5 Display message md5sum

 rosmsg package List messages in a package

 rosmsg packages List packages that contain messages

Type rosmsg <command> -h for more detailed usage

18

If a topic publishes a message, we can determine the message type and read the message. There is a

long list of messages for TurtleBot. Some important packages/MessageTypes are as follows:

Messages that involve the Kobuki base:

tlharmanphd@D125-43873:~$ rosmsg list | grep kobuki
kobuki_msgs/AutoDockingAction

kobuki_msgs/AutoDockingActionFeedback

kobuki_msgs/AutoDockingActionGoal

kobuki_msgs/AutoDockingActionResult

kobuki_msgs/AutoDockingFeedback

kobuki_msgs/AutoDockingGoal

kobuki_msgs/AutoDockingResult

kobuki_msgs/BumperEvent

kobuki_msgs/ButtonEvent

kobuki_msgs/CliffEvent

kobuki_msgs/ControllerInfo

kobuki_msgs/DigitalInputEvent

kobuki_msgs/DigitalOutput

kobuki_msgs/DockInfraRed

kobuki_msgs/ExternalPower

kobuki_msgs/KeyboardInput

kobuki_msgs/Led

kobuki_msgs/MotorPower

kobuki_msgs/PowerSystemEvent

kobuki_msgs/RobotStateEvent

kobuki_msgs/ScanAngle

kobuki_msgs/SensorState

kobuki_msgs/Sound

kobuki_msgs/VersionInfo

kobuki_msgs/WheelDropEvent

tlharmanphd@D125-43873:~$

Messages for position, orientation, etc. Commands and responses

tlharmanphd@D125-43873:~$ rosmsg list | grep geometry
geometry_msgs/Accel

geometry_msgs/AccelStamped

geometry_msgs/AccelWithCovariance

geometry_msgs/AccelWithCovarianceStamped

geometry_msgs/Inertia

geometry_msgs/InertiaStamped

geometry_msgs/Point

geometry_msgs/Point32

geometry_msgs/PointStamped

geometry_msgs/Polygon

geometry_msgs/PolygonStamped

geometry_msgs/Pose

geometry_msgs/Pose2D

geometry_msgs/PoseArray

geometry_msgs/PoseStamped

geometry_msgs/PoseWithCovariance

geometry_msgs/PoseWithCovarianceStamped

geometry_msgs/Quaternion

19

geometry_msgs/QuaternionStamped

geometry_msgs/Transform

geometry_msgs/TransformStamped

geometry_msgs/Twist

geometry_msgs/TwistStamped

geometry_msgs/TwistWithCovariance

geometry_msgs/TwistWithCovarianceStamped

geometry_msgs/Vector3

geometry_msgs/Vector3Stamped

geometry_msgs/Wrench

geometry_msgs/WrenchStamped

tlharmanphd@D125-43873:~$ rosmsg list | grep turtle
turtle_actionlib/ShapeAction

turtle_actionlib/ShapeActionFeedback

turtle_actionlib/ShapeActionGoal

turtle_actionlib/ShapeActionResult

turtle_actionlib/ShapeFeedback

turtle_actionlib/ShapeGoal

turtle_actionlib/ShapeResult

turtle_actionlib/Velocity

turtlebot_actions/FindFiducialAction

turtlebot_actions/FindFiducialActionFeedback

turtlebot_actions/FindFiducialActionGoal

turtlebot_actions/FindFiducialActionResult

turtlebot_actions/FindFiducialFeedback

turtlebot_actions/FindFiducialGoal

turtlebot_actions/FindFiducialResult

turtlebot_actions/TurtlebotMoveAction

turtlebot_actions/TurtlebotMoveActionFeedback

turtlebot_actions/TurtlebotMoveActionGoal

turtlebot_actions/TurtlebotMoveActionResult

turtlebot_actions/TurtlebotMoveFeedback

turtlebot_actions/TurtlebotMoveGoal

turtlebot_actions/TurtlebotMoveResult

turtlebot_calibration/ScanAngle

turtlebot_msgs/PanoramaImg

turtlesim/Color

turtlesim/Pose

We have another new item here – actions:

Summarizing from Quigley Programming Robots with ROS, A Practical Introduction to the Robot

Operating System – Morgan Quigley, Brian Gerkey, William D. Smart

Chapter 5. Actions: ROS services are useful for synchronous request/response interactions—that is, for

those cases where asynchronous ROS topics don’t seem like the best fit. However, services aren’t

always the best fit, either, in particular when the request that’s being made is more than a simple

instruction of the form “get (or set) the value of X.” While services are handy for simple get/set

interactions like querying status and managing configuration, they don’t work well when you need to

20

initiate a long-running task. For example, imagine commanding a robot to drive to some distant

location; call it goto_position . The robot will require significant time (seconds, minutes, perhaps

longer) to do so, with the exact amount of time impossible to know in advance, since obstacles may

arise that result in a longer path.

ROS actions are the best way to implement interfaces to time-extended, goal-oriented behaviors like

goto_position . While services are synchronous, actions are asynchronous. Similar to the request and

response of a service, an action uses a goal to initiate a behavior and sends a result when the behavior

is complete. But the action further uses feedback to provide updates on the behavior’s progress toward

the goal and also allows for goals to be canceled. Actions are themselves implemented using topics. An

action is essentially a higher-level protocol that specifies how a set of topics (goal, result, feedback,

etc.) should be used in combination.

The first step in creating a new action is to define the goal , result , and feedback message formats in

an action definition file , which by convention has the suffix .action . The .action file format is similar to

the .srv format used to define services, just with an additional field. And, as with services, each field

within an .action file will become its own message.

RQT_GRAPH with /turtlebot_teleop_keyboard Node

tlharmanphd@D125-43873:~$ rqt_graph (Show /turtlebot_teleop_keyboard Node)

21

tlharmanphd@D125-43873:~$ rostopic type /cmd_vel_mux/input/teleop

geometry_msgs/Twist

The word “type” in this context is referring to the concept of a

data type . It’s important to understand message types because they determine the content of the

messages. That is, the message type of a topic tells you what information is included in each message

on that topic, and how that information is organized.

From the message type we can fine the format of the message. Be sure to note that Twist in the message

type starts with a capital letter. http://wiki.ros.org/rostopic

tlharmanphd@D125-43873:~$ rosmsg show geometry_msgs/Twist
geometry_msgs/Vector3 linear

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 angular

 float64 x

 float64 y

 float64 z

Rosmsg show geometry_msgs/Pose

tlharmanphd@D125-43873:~$ rosmsg show geometry_msgs/Pose
geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

http://wiki.ros.org/msg

To understand the format of the message it is necessary to find the message type. The types include

integers of 8, 16, 32, or 64 bits, floating point numbers, strings and other formats. The structure of the

message type is:

 <field> <constant>

where the field defines the type of data and the constant is the name.

http://wiki.ros.org/rostopic
http://wiki.ros.org/msg

22

Kobuki Control

http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System

23

Rosmsg show nav_msgs/Odometry

tlharmanphd@D125-43873:~$ rosmsg show nav_msgs/Odometry
std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

string child_frame_id

geometry_msgs/PoseWithCovariance pose

 geometry_msgs/Pose pose

 geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

 geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

 float64[36] covariance

geometry_msgs/TwistWithCovariance twist

 geometry_msgs/Twist twist

 geometry_msgs/Vector3 linear

 float64 x

 float64 y

 float64 z

 geometry_msgs/Vector3 angular

 float64 x

 float64 y

 float64 z

 float64[36] covariance

http://answers.ros.org/question/12438/posestamped-and-pose-type-difference/

Pose is the x,y,z position and quaternion orientation of the robot, a rosmsg show Pose reveals:

[geometry_msgs/Pose]:

geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

http://answers.ros.org/question/12438/posestamped-and-pose-type-difference/

24

While PoseStamped is simply a Pose message with the standard ROS header:

[geometry_msgs/PoseStamped]:

Header header

 uint32 seq

 time stamp

 string frame_id

geometry_msgs/Pose pose

 geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

 geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

I think it depends on which stack you are using for which message is used, and I believe that PoseStamped is

largely preferred because it includes the coordinate frame_id of the given Pose, as well as the time stamp that

that Pose is valid.

On the other hand, if you don't need time information (say you are storing a time-independant Path), you could

use an array of Poses, which would not need the additional header information.

Example:
header:

 seq: 26892

 stamp:

 secs: 1453674417

 nsecs: 187541901

 frame_id: odom

child_frame_id: base_footprint

pose:

 pose:

 position:

 x: -0.574884068509

 y: 1.18914280788

 z: 0.0

25

Rostopic echo /odom/pose/pose

From Quigley page 296 Just position and orientation

tlharmanphd@D125-43873:~$ rostopic echo /odom/pose/pose
position: (Arbitrary)

 x: 0.242611984228

 y: 0.00375067019721

 z: 0.0

orientation:

 x: 0.0

 y: 0.0

 z: 0.002967055375

 w: 0.999995598282

position:

 x: 0.242611984228

 y: 0.00375067019721

 z: 0.0

orientation:

 x: 0.0

 y: 0.0

 z: 0.002967055375

 w: 0.999995598282

RE-START MINIMAL LAUNCH SET X=0, Y=0. OUTPUT TO TEXT FILE

tlharmanphd@D125-43873:~$ rostopic echo /odom/pose/pose >> tb_pose_test1.txt
position:

 x: 0.0

 y: 0.0

 z: 0.0

orientation:

 x: 0.0

 y: 0.0

 z: 0.0

 w: 1.0

FINAL – MOVE IN STRAIGHT LINE ABOUT 1.2 METERS
position:
 x: 1.22930107254
 y: -0.0141608381814
 z: 0.0
orientation:
 x: 0.0
 y: 0.0
 z: -0.00741758129944
 w: 0.999972489365

GO BACK
pose:
 position:
 x: 0.0111620718896
 y: -0.053471637895
 z: 0.0

26

 orientation:
 x: 0.0
 y: 0.0
 z: 0.0312363117969
 w: 0.999512027354
covariance: [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.05]

Rostopic echo /odom/pose
tlharmanphd@D125-43873:~$ rostopic echo /odom/pose

pose:

 position:

 x: 0.0111620718896

 y: -0.053471637895

 z: 0.0

 orientation:

 x: 0.0

 y: 0.0

 z: 0.0312363117969

 w: 0.999512027354

covariance: [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.05]

tlharmanphd@D125-43873:~$ ^C
pose:

 position:

 x: 0.0111620718896

 y: -0.053471637895

 z: 0.0

 orientation:

 x: 0.0

 y: 0.0

 z: 0.0312363117969

 w: 0.999512027354

covariance: [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.05]

tlharmanphd@D125-43873:~$ ^C

27

ROS SERVICES with TURTLEBOT

tlharmanphd@D125-43873:/$ rosservice help
Commands:

 rosservice args print service arguments

 rosservice call call the service with the provided arguments

 rosservice find find services by service type

 rosservice info print information about service

 rosservice list list active services

 rosservice type print service type

 rosservice uri print service ROSRPC uri

Type rosservice <command> -h for more detailed usage, e.g. 'rosservice call -h'

Use the $rosservice list command to see the services for the active node.

tlharmanphd@D125-43873:~$ rosservice list
/app_manager/get_loggers

/app_manager/set_logger_level

/bumper2pointcloud/get_loggers

/bumper2pointcloud/set_logger_level

/capability_server/establish_bond

/capability_server/free_capability

/capability_server/get_capability_spec

/capability_server/get_capability_specs

/capability_server/get_interfaces

/capability_server/get_loggers

/capability_server/get_nodelet_manager_name

/capability_server/get_providers

/capability_server/get_remappings

/capability_server/get_running_capabilities

/capability_server/get_semantic_interfaces

/capability_server/reload_capabilities

/capability_server/set_logger_level

/capability_server/start_capability

/capability_server/stop_capability

/capability_server/use_capability

/capability_server_nodelet_manager/get_loggers

/capability_server_nodelet_manager/list

/capability_server_nodelet_manager/load_nodelet

/capability_server_nodelet_manager/set_logger_level

/capability_server_nodelet_manager/unload_nodelet

/cmd_vel_mux/get_loggers

/cmd_vel_mux/set_logger_level

/cmd_vel_mux/set_parameters

/diagnostic_aggregator/get_loggers

/diagnostic_aggregator/set_logger_level

/interactions/get_interaction

/interactions/get_interactions

/interactions/get_loggers

/interactions/get_roles

/interactions/request_interaction

/interactions/set_interactions

/interactions/set_logger_level

/master/get_loggers

28

/master/set_logger_level

/mobile_base/get_loggers

/mobile_base/set_logger_level

/mobile_base_nodelet_manager/get_loggers

/mobile_base_nodelet_manager/list

/mobile_base_nodelet_manager/load_nodelet

/mobile_base_nodelet_manager/set_logger_level

/mobile_base_nodelet_manager/unload_nodelet

/robot_state_publisher/get_loggers

/robot_state_publisher/set_logger_level

/rosout/get_loggers

/rosout/set_logger_level

/rqt_gui_py_node_2298/get_loggers

/rqt_gui_py_node_2298/set_logger_level

/turtlebot/invite

/turtlebot/list_rapps

/turtlebot/platform_info

/turtlebot/start_rapp

/turtlebot/stop_rapp

/turtlebot_laptop_battery/get_loggers

/turtlebot_laptop_battery/set_logger_level

/turtlebot_teleop_keyboard/get_loggers

/turtlebot_teleop_keyboard/set_logger_level

/zeroconf/add_listener

/zeroconf/add_service

/zeroconf/list_discovered_services

/zeroconf/list_published_services

/zeroconf/remove_listener

/zeroconf/remove_service

/zeroconf/zeroconf/get_loggers

/zeroconf/zeroconf/set_logger_level

tlharmanphd@D125-43873:~$

29

tlharmanphd@D125-43873:/$ rosservice help
Commands:

 rosservice args print service arguments

 rosservice call call the service with the provided arguments

 rosservice find find services by service type

 rosservice info print information about service

 rosservice list list active services

 rosservice type print service type

 rosservice uri print service ROSRPC uri

Type rosservice <command> -h for more detailed usage, e.g. 'rosservice call -h'

Use the $rosservice list command to see the services for the active node.

30

PYTHON SCRIPT TO CONTROL TURTLEBOT
We will present a simple Python script to move the TurtleBot in this section. The basic approach to creating a

script begins with a design. The design should detail the activity to be accomplished. For example, a script could

command TurtleBot to move straight ahead, make several turns, and then stop. The next step is to determine the

commands to TurtleBot to accomplish the tasks. Finally, a script is written and tested to see if TurtleBot responds

in the expected way. The remote computer will execute the Python script and TurtleBot will move as directed if

the script is correctly written.

In terms of the TurtleBot commands that will be used, we can summarize the process as follows:

design the program outlining the activities for TurtleBot when the script executes

determine the nodes, topics, and messages to be sent (published) or received (subscribed) from the

TurtleBot during the activity

study the ROS Python tutorials and examples to determine the way to write Python statements that send

or receive messages between the remote computer and the TurtleBot.

There is a great deal of documentation describing ROS Python scripts. The statement structure is fixed for many

operations. The site http://wiki.ros.org/rospy describes briefly rospy which is called the ROS client

library for Python. The purpose is to allow statements written in Python language to interface with ROS topics

and services.

The site http://wiki.ros.org/rospy_tutorials contains a list of tutorials. At the top of the tutorial page

will be a choice of distributions of ROS and Indigo is chosen for our discussions. A specific tutorial that de-

scribes many of the Python statements that are used in a typical script can be found here:

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)

To find the nodes that are active after the keyboard_teleop.launch file was launched type:

$ rosnode list

/app_manager

/bumper2pointcloud

/capability_server

/capability_server_nodelet_manager

/cmd_vel_mux

/diagnostic_aggregator

/interactions

/master

/mobile_base

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

/turtlebot_laptop_battery

/turtlebot_teleop_keyboard

/zeroconf/zeroconf

The nodes are described in the Kobuki tutorial at

http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System

According to the site, the mobile_base node listens for commands such as velocity and publishes sensor infor-

mation. The cmd_vel_mux serves to multiplex commands to assure that only one velocity command at a time is

relayed through to the mobile base.

http://wiki.ros.org/rospy
http://wiki.ros.org/rospy_tutorials
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System

31

In a previous example we used the command rostopic pub to publish the linear and angular geome-

try_msgs/Twist data to move TurtleBot. The Python script that follows will accomplish essentially the same

thing. The script will send Twist message on the topic cmd_vel_mux/input/navi.

A Python script will be created to move TurtleBot forward in a simple example. If you are not very familiar with

Python, it may be best to study and execute the example script and then refer to the ROS tutorials. The procedure

to create an executable script on the remote computer is as follows:

1. Write the script with the required format for a ROS Python script using an ordinary text editor.

2. Give the script a name in the format <name>.py and save the script.

We have called our script ControlTurtleBot.py and saved it in our home directory.

To make the scrip executable, execute the Ubuntu command:

$ chmod +x ControlTurtleBot.py

Make sure the TurtleBot is ready by running the minimal launch. Then in a new terminal window, type the com-

mand:

PYTHON AFTER MINIMAL LAUNCH

Terminal 1: $. .turtlebot 2

$ ssh turtlebot-0877@192.168.11.110 turtlebot
$ roslaunch turtlebot_bringup minimal.launch

tlharmanphd@D125-43873:~$ pwd /home/tlharmanphd

TERMINAL 2

 $. .turtlebot2

 $ python python_GoInCircle.py

In our example, Ctrl+C is used to stop the TurtleBot. The comments in the script explain the statements. The

tutorials listed previously give further details of Python scripts written using the ROS conventions.

32

#!/usr/bin/env python python_GoInCircle

A very basic TurtleBot script that moves TurtleBot InCircle indefinitely.

Press CTRL + C to stop. To run:

On TurtleBot:

$ roslaunch turtlebot_bringup minimal.launch

On work station:

$ python python_GoInCircle

import rospy

from geometry_msgs.msg import Twist

class GoInCircle():

 def __init__(self):

 # initiliaze

 rospy.init_node('GoInCircle', anonymous=False)

 # tell user how to stop TurtleBot

 rospy.loginfo("To stop TurtleBot CTRL + C")

 # What function to call when you ctrl + c

 rospy.on_shutdown(self.shutdown)

 # Create a publisher which can "talk" to TurtleBot and tell it to move

 # Tip: You may need to change cmd_vel_mux/input/navi to /cmd_vel if

you're not using TurtleBot2

 self.cmd_vel = rospy.Publisher('cmd_vel_mux/input/navi', Twist,

queue_size=10)

 #TurtleBot will stop if we don't keep telling it to move. How often

should we tell it to move? 10 HZ

 r = rospy.Rate(10);

 # Twist is a datatype for velocity

 move_cmd = Twist()

 # let's go forward at 0.2 m/s

 move_cmd.linear.x = 0.2

 # let's turn at 1.0 radians/s About 6 seconds to complete circle

 move_cmd.angular.z = 1.0

 # as long as you haven't ctrl + c keeping doing...

 while not rospy.is_shutdown():

 # publish the velocity

 self.cmd_vel.publish(move_cmd)

 # wait for 0.1 seconds (10 HZ) and publish again

 r.sleep()

 def shutdown(self):

 # stop turtlebot

 rospy.loginfo("Stop TurtleBot")

 # a default Twist has linear.x of 0 and angular.z of 0. So it'll stop

TurtleBot

33

 self.cmd_vel.publish(Twist())

 # sleep just makes sure TurtleBot receives the stop command prior to

shutting down the script

 rospy.sleep(1)

if __name__ == '__main__':

 try:

 GoInCircle()

 except:

 rospy.loginfo("GoInCircle node terminated.")

See the new node /GoInCircle

34

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ rosnode list
/GoInCircle

/app_manager

/bumper2pointcloud

/capability_server

/capability_server_nodelet_manager

/cmd_vel_mux

/diagnostic_aggregator

/interactions

/master

/mobile_base

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

/turtlebot_laptop_battery

/zeroconf/zeroconf

tlharmanphd@D125-43873:~$ rostopic list

/capability_server/bonds

/capability_server/events

/cmd_vel_mux/active

/cmd_vel_mux/input/navi
/cmd_vel_mux/input/safety_controller

/cmd_vel_mux/input/teleop

/cmd_vel_mux/parameter_descriptions

/cmd_vel_mux/parameter_updates

/diagnostics

/diagnostics_agg

/diagnostics_toplevel_state

/gateway/force_update

/gateway/gateway_info

/info

/interactions/interactive_clients

/interactions/pairing

/joint_states

/laptop_charge

/mobile_base/commands/controller_info

/mobile_base/commands/digital_output

/mobile_base/commands/external_power

/mobile_base/commands/led1

/mobile_base/commands/led2

/mobile_base/commands/motor_power

/mobile_base/commands/reset_odometry

/mobile_base/commands/sound

/mobile_base/commands/velocity

/mobile_base/controller_info

/mobile_base/debug/raw_control_command

/mobile_base/debug/raw_data_command

/mobile_base/debug/raw_data_stream

/mobile_base/events/bumper

/mobile_base/events/button

/mobile_base/events/cliff

/mobile_base/events/digital_input

/mobile_base/events/power_system

/mobile_base/events/robot_state

/mobile_base/events/wheel_drop

/mobile_base/sensors/bumper_pointcloud

35

/mobile_base/sensors/core

/mobile_base/sensors/dock_ir

/mobile_base/sensors/imu_data

/mobile_base/sensors/imu_data_raw

/mobile_base/version_info

/mobile_base_nodelet_manager/bond

/odom

/rosout

/rosout_agg

/tf

/tf_static

/turtlebot/incompatible_rapp_list

/turtlebot/rapp_list

/turtlebot/status

/zeroconf/lost_connections

/zeroconf/new_connections

tlharmanphd@D125-43873:~$

Real TurtleBot’s odometry display in rviz
The commands used in simulation can be used with the physical TurtleBot. After bringing up the real TurtleBot

with minimal launch, start rviz on the remote computer:

$ roslaunch turtlebot_rviz_launchers view_robot.launch

TurtleBot will appear in rviz as this screenshot shows

36

Then, set up rviz with odom for Fixed Frame and Add > By topic > Odometry.

Run the command to move TurtleBot in a circle

$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist '{linear: {x:
0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

Stop TurtleBot by pressing Ctrl+c with focus on the window in which you executed the command to move the

robot.

For the next screenshot, TurtleBot’s turning was stopped with Ctrl+C and the Python script was executed that

drives TurtleBot in a circle until Ctrl+C is pressed again.

The command is

$python python_GoInCircle.py

37

TurtleBot’s path after Twist message and run of Python script

38

RQT_PLOT NEEDS TO BE TESTED -THIS IS FOR TURTLESIM

We can plot information about the nodes and topics.

tlharmanphd@D125-43873:~$ rqt_plot

Select plotting type:

Figure 4 Selection of Plotting for rqt_plot

Experiment with different plot types and controls allowed for the plot such as changing the scales, etc.

39

Figure 5 Plot of /turtle1/pose/x and /pose/y

Period of just over 3 seconds for 360 degree rotation. Note the periodic motion in x and y. Right click

to change values for axes, etc.

With this plot, right click to set the axes ranges and other aspects of the plot. The pose has five values

as shown before, but we have chosen to only plot the x and y variations as the turtle moves in a circle.

Choosing only x and y positions and experimenting with scales and autoscroll. See the tutorial for

further help.

http://wiki.ros.org/rqt_plot

To plot from the command line, both of the following lines plot the same topics according to the wiki.

$ rqt_plot /turtle1/pose/x:y:z

$ rqt_plot /turtle1/pose/x /turtle1/pose/y /turtle1/pose/z

Obviously, if you want to change the topics to plot, you need to restart the program and give the new topic
names.

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

http://wiki.ros.org/rqt_plot
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

40

As noted before, a turtlesim/Velocity message has two floating point elements : linear and angular. In

this case, 2.0 becomes the linear value, and 1.8 is the angular value. These arguments are actually in
YAML syntax, which is described more in the YAML command line documentation.

Clear the screen

When you want to CLEAR THE SCREEN

tlharmanphd@D125-43873:~$ rosservice call /clear

DASHBOARD OF TURTLEBOT

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ roslaunch turtlebot_dashboard turtlebot_dashboard.launch

... logging to /home/tlharmanphd/.ros/log/b27145fe-d698-11e5-9b35-8019347aeccf/roslaunch-D125-43873-

14885.log

Checking log directory for disk usage. This may take awhile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.11.120:49247/

SUMMARY

========

PARAMETERS

 * /rosdistro: indigo

 * /rosversion: 1.11.16

NODES

 rqt_gui (rqt_gui/rqt_gui)

ROS_MASTER_URI=http://192.168.11.110:11311

c0re service [/rosout] found

process[rqt_gui-1]: started with pid [14894]

WARNING: Package "ompl" does not follow the version conventions. It should not contain leading zeros (unless

the number is 0).

WARNING: Package "ompl" does not follow the version conventions. It should not contain leading zeros (unless

the number is 0).

http://wiki.ros.org/ROS/YAMLCommandLine

41

JOYSTICK xBOX 360

http://wiki.ros.org/turtlebot_teleop

The turtlebot_teleop package provides launch files for teleoperation with different input devices.

 For a keyboard teleoperation use:

 roslaunch turtlebot_teleop keyboard_teleop.launch

For a ps3 joystick use:

 roslaunch turtlebot_teleop ps3_teleop.launch

For a xbox360 joystick use:

 roslaunch turtlebot_teleop xbox360_teleop.launch

http://wiki.ros.org/joy

http://wiki.ros.org/turtlebot_teleop
http://wiki.ros.org/joy

42

$. .turtlebot2

$ ssh turtlebot-0877@192.168.11.110 password: turtlebot

turtlebot@turtlebot-0428:~$ roslaunch turtlebot_bringup minimal.launch

TERMINAL 2 JOYSTICK

tlharmanphd@D125-43873:~$. .turtlebot2

 tlharmanphd@D125-43873:~$ roslaunch turtlebot_teleop xbox360_teleop.launch

tlharmanphd@D125-43873:~$. .turtlebot2

tlharmanphd@D125-43873:~$ roslaunch turtlebot_teleop xbox360_teleop.launch

... logging to /home/tlharmanphd/.ros/log/b27145fe-d698-11e5-9b35-8019347aeccf/roslaunch-D125-43873-

15282.log

Checking log directory for disk usage. This may take awhile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.11.120:35530/

SUMMARY

========

PARAMETERS

 * /rosdistro: indigo

 * /rosversion: 1.11.16

 * /teleop_velocity_smoother/accel_lim_v: 1.0

 * /teleop_velocity_smoother/accel_lim_w: 2.0

 * /teleop_velocity_smoother/decel_factor: 1.5

 * /teleop_velocity_smoother/frequency: 20.0

 * /teleop_velocity_smoother/robot_feedback: 2

 * /teleop_velocity_smoother/speed_lim_v: 0.8

 * /teleop_velocity_smoother/speed_lim_w: 5.4

 * /turtlebot_teleop_joystick/axis_angular: 0

 * /turtlebot_teleop_joystick/axis_deadman: 4

 * /turtlebot_teleop_joystick/axis_linear: 1

 * /turtlebot_teleop_joystick/scale_angular: 1.5

 * /turtlebot_teleop_joystick/scale_linear: 0.5

43

NODES

 joystick (joy/joy_node)

 teleop_velocity_smoother (nodelet/nodelet)

 turtlebot_teleop_joystick (turtlebot_teleop/turtlebot_teleop_joy)

ROS_MASTER_URI=http://192.168.11.110:11311

core service [/rosout] found

process[teleop_velocity_smoother-1]: started with pid [15291]

process[turtlebot_teleop_joystick-2]: started with pid [15292]

process[joystick-3]: started with pid [15293]

PARAMETER SERVER

rosparam help

tlharmanphd@D125-43873:/$ rosparam help
rosparam is a command-line tool for getting, setting, and deleting parameters from the ROS Parameter Server.

Commands:

 rosparam set set parameter

 rosparam get get parameter

 rosparam load load parameters from file

 rosparam dump dump parameters to file

 rosparam delete delete parameter

 rosparam list list parameter names

tlharmanphd@D125-43873:~$ rosparam get /rosversion

'1.11.16

tlharmanphd@D125-43873:~$ rosparam get /rosdistro

'indigo

tlharmanphd@D125-43873:/$ rosmsg help
rosmsg is a command-line tool for displaying information about ROS Message types.

Commands:

 rosmsg show Show message description

 rosmsg list List all messages

 rosmsg md5 Display message md5sum

 rosmsg package List messages in a package

 rosmsg packages List packages that contain messages

Type rosmsg <command> -h for more detailed usage

Hold left button and use left stick to move.

44

tlharmanphd@D125-43873:~$ rosparam set /teleop_velocity_smoother/speed_lim_v 0.8

tlharmanphd@D125-43873:~$ rosparam get /teleop_velocity_smoother/speed_lim_v

Ros Parameters after joy node

tlharmanphd@D125-43873:~$ rosparam list
/app_manager/auto_rapp_installation

/app_manager/auto_start_rapp

/app_manager/capability_server_name

/app_manager/local_remote_controllers_only

/app_manager/preferred

/app_manager/rapp_package_blacklist

/app_manager/rapp_package_whitelist

/app_manager/robot_icon

/app_manager/robot_name

/app_manager/robot_type

/app_manager/screen

/app_manager/simulation

/app_manager/use_gateway_uuids

/bumper2pointcloud/pointcloud_radius

/capability_server/blacklist

/capability_server/defaults/kobuki_capabilities/KobukiBringup

/capability_server/defaults/kobuki_capabilities/KobukiBumper

/capability_server/defaults/kobuki_capabilities/KobukiCliffDetection

/capability_server/defaults/kobuki_capabilities/KobukiLED

/capability_server/defaults/kobuki_capabilities/KobukiLED1

/capability_server/defaults/kobuki_capabilities/KobukiLED2

/capability_server/defaults/kobuki_capabilities/KobukiWheelDropDetection

/capability_server/defaults/std_capabilities/Diagnostics

/capability_server/defaults/std_capabilities/DifferentialMobileBase

/capability_server/defaults/std_capabilities/LaserSensor

/capability_server/defaults/std_capabilities/RGBDSensor

/capability_server/defaults/std_capabilities/RobotStatePublisher

/capability_server/defaults/turtlebot_capabilities/TurtleBotBringup

/capability_server/nodelet_manager_name

/capability_server/package_whitelist

/cmd_vel_mux/yaml_cfg_file

/description

/diagnostic_aggregator/analyzers/input_ports/contains

/diagnostic_aggregator/analyzers/input_ports/path

/diagnostic_aggregator/analyzers/input_ports/remove_prefix

/diagnostic_aggregator/analyzers/input_ports/timeout

/diagnostic_aggregator/analyzers/input_ports/type

/diagnostic_aggregator/analyzers/kobuki/contains

/diagnostic_aggregator/analyzers/kobuki/path

/diagnostic_aggregator/analyzers/kobuki/remove_prefix

/diagnostic_aggregator/analyzers/kobuki/timeout

/diagnostic_aggregator/analyzers/kobuki/type

/diagnostic_aggregator/analyzers/power/contains

/diagnostic_aggregator/analyzers/power/path

/diagnostic_aggregator/analyzers/power/remove_prefix

/diagnostic_aggregator/analyzers/power/timeout

/diagnostic_aggregator/analyzers/power/type

/diagnostic_aggregator/analyzers/sensors/contains

/diagnostic_aggregator/analyzers/sensors/path

/diagnostic_aggregator/analyzers/sensors/remove_prefix

/diagnostic_aggregator/analyzers/sensors/timeout

45

/diagnostic_aggregator/analyzers/sensors/type

/diagnostic_aggregator/base_path

/diagnostic_aggregator/pub_rate

/icon

/interactions/interactions

/interactions/pairing

/interactions/rosbridge_address

/interactions/rosbridge_port

/interactions/webserver_address

/mobile_base/base_frame

/mobile_base/battery_capacity

/mobile_base/battery_dangerous

/mobile_base/battery_low

/mobile_base/cmd_vel_timeout

/mobile_base/device_port

/mobile_base/odom_frame

/mobile_base/publish_tf

/mobile_base/use_imu_heading

/mobile_base/wheel_left_joint_name

/mobile_base/wheel_right_joint_name

/name

/robot/name

/robot/type

/robot_description

/robot_state_publisher/publish_frequency

/rocon/version

/rosdistro

/roslaunch/uris/host_192_168_11_110__50801

/roslaunch/uris/host_192_168_11_110__56061

/roslaunch/uris/host_192_168_11_120__35530

/roslaunch/uris/host_192_168_11_120__38309

/roslaunch/uris/host_192_168_11_120__49247

/rosversion

/run_id

/teleop_velocity_smoother/accel_lim_v

/teleop_velocity_smoother/accel_lim_w

/teleop_velocity_smoother/decel_factor

/teleop_velocity_smoother/frequency

/teleop_velocity_smoother/robot_feedback

/teleop_velocity_smoother/speed_lim_v

/teleop_velocity_smoother/speed_lim_w

/turtlebot_laptop_battery/acpi_path

/turtlebot_teleop_joystick/axis_angular

/turtlebot_teleop_joystick/axis_deadman

/turtlebot_teleop_joystick/axis_linear

/turtlebot_teleop_joystick/scale_angular

/turtlebot_teleop_joystick/scale_linear

/turtlebot_teleop_keyboard/scale_angular

/turtlebot_teleop_keyboard/scale_linear

/use_sim_time

/version

/zeroconf/zeroconf/services

tlharmanphd@D125-43873:~$ rosparam get /robot/name

turtlebot

46

tlharmanphd@D125-43873:~$ rosparam get /turtlebot_teleop_joystick/axis_linear

1

tlharmanphd@D125-43873:~$

tlharmanphd@D125-43873:~$ rosparam get /teleop_velocity_smoother/frequency

20.0

tlharmanphd@D125-43873:~$ rosparam set /teleop_velocity_smoother/frequency 40.0

tlharmanphd@D125-43873:~$ rosparam get /teleop_velocity_smoother/frequency

40.0

47

ROSBAG SAVE DATA NEEDS TO BE TESTED – THIS IS FOR TURTLESIM

rosbag help

tlharmanphd@D125-43873:/$ rosbag help
Usage: rosbag <subcommand> [options] [args]

A bag is a file format in ROS for storing ROS message data. The rosbag command can record, replay and manipulate

bags.

Available subcommands:

 check Determine whether a bag is playable in the current system, or if it can be migrated.

 compress Compress one or more bag files.

 decompress Decompress one or more bag files.

 filter Filter the contents of the bag.

 fix Repair the messages in a bag file so that it can be played in the current system.

 help

 info Summarize the contents of one or more bag files.

 play Play back the contents of one or more bag files in a time-synchronized fashion.

 record Record a bag file with the contents of specified topics.

 reindex Reindexes one or more bag files.

For additional information, see http://wiki.ros.org/rosbag

Table 2 ROS Help Information

rosbag help

Usage: rosbag <subcommand> [options] [args]

Available subcommands:

 check Determine whether a bag is playable in the current system, or if it can be migrated.

 compress Compress one or more bag files.

 decompress Decompress one or more bag files.

 filter Filter the contents of the bag.

 fix Repair the messages in a bag file so that it can be played in the current system.

 help

 info Summarize the contents of one or more bag files.

 play Play back the contents of one or more bag files in a time-synchronized fashion.

 record Record a bag file with the contents of specified topics.

 reindex Reindexes one or more bag files.

http://wiki.ros.org/rosbag

48

We will use the record and play option to learn how to save and replay messages.

For additional information, see http://wiki.ros.org/rosbag

References that describe the rosbag commands in more detail:

http://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data

C:\home\tlharmanphd\Desktop\HYPERLINK

C:\home\tlharmanphd\Desktop\HYPERLINK

C:\home\tlharmanphd\Desktop\HYPERLINK

http://wiki.ros.org/rosbag/Commandline

C:\home\tlharmanphd\Desktop\HYPERLINK

C:\home\tlharmanphd\Desktop\HYPERLINK

C:\home\tlharmanphd\Desktop\HYPERLINK

Figure 11 Windows for turtlesim

tlharmanphd@D125-43873:~$ pwd

/home/tlharmanphd

tlharmanphd@D125-43873:~$ mkdir bagfilesturtle

http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK
../../../../../C:/home/tlharmanphd/Desktop/HYPERLINK

49

tlharmanphd@D125-43873:~$ ls -d b*

backup bagfilesturtle baxter.sh~

Here we are making a temporary directory to record data.

Then running rosbag record command with the option –a indicates that all published topics will be

accumulated in a bag file.

Start to record the topics with the rosbag record -a command:

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag record -a

[INFO] [1427220792.012510086]: Recording to 2015-03-24-13-13-12.bag.

[INFO] [1427220792.012714289]: Subscribing to /turtle1/color_sensor

[INFO] [1427220792.015024218]: Subscribing to /turtle1/cmd_vel

[INFO] [1427220792.017232168]: Subscribing to /rosout

[INFO] [1427220792.019675036]: Subscribing to /rosout_agg

[INFO] [1427220792.021687650]: Subscribing to /turtle1/pose

Now change the focus to the teleop_key window move turtle with arrow keys for 10 or so seconds.

Figure 12 Turtle moved with keyboard keys with rosbag recording

In the window running rosbag record, exit with a Ctrl-C when you have finished moving the turtle.

Now examine the contents of the directory bagfilesturtle. You should see a file with a name that begins

50

with the year, data, and time and the suffix .bag. This is the bag file that contains all topics published by

any node in the time that rosbag record was running.

Now that we've recorded a bag file using rosbag record option we can examine it and play it back using

the commands rosbag info and rosbag play. First we are going to see what's recorded in the bag file.

rosbag info

tlharmanphd@D125-43873:~/bagfilesturtle$ ls

2015-03-24-13-13-12.bag

Here the name is the date and time.

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag info 2015-03-24-13-13-12.bag

path: 2015-03-24-13-13-12.bag

version: 2.0

duration: 1:22s (82s)

start: Mar 24 2015 13:13:12.02 (1427220792.02)

end: Mar 24 2015 13:14:34.58 (1427220874.58)

size: 823.2 KB

messages: 10736

compression: none [1/1 chunks]

types: geometry_msgs/Twist [9f195f881246fdfa2798d1d3eebca84a]

 rosgraph_msgs/Log [acffd30cd6b6de30f120938c17c593fb]

 turtlesim/Color [353891e354491c51aabe32df673fb446]

 turtlesim/Pose [863b248d5016ca62ea2e895ae5265cf9]

topics: /rosout 160 msgs : rosgraph_msgs/Log (2 connections)

 /rosout_agg 156 msgs : rosgraph_msgs/Log

 /turtle1/cmd_vel 130 msgs : geometry_msgs/Twist

 /turtle1/color_sensor 5145 msgs : turtlesim/Color

 /turtle1/pose 5145 msgs : turtlesim/Pose

This tells us topic names and types as well as the number (count) of each message topic contained in

the bag file. We can see that of the topics being advertised that we saw in the rostopic output, four of

the five were actually published over our recording interval. As we ran rosbag record with the -a flag it

recorded all messages published by all nodes.

The next step in this tutorial is to replay the bag file to reproduce behavior in the running system. First

kill the teleop program that may be still running from the previous section - Ctrl-c in the terminal where

you started turtle_teleop_key.

rosbag play

Leave turtlesim running or restart with a “fresh” turtle.

51

tlharmanphd@D125-43873:~$ rosrun turtlesim turtlesim_node

[INFO] [1427221332.211909961]: Starting turtlesim with node name /turtlesim

[INFO] [1427221332.225487283]: Spawning turtle [turtle1] at x=[5.544445], y=[5.544445],

theta=[0.000000]

In a terminal window run the following command in the directory where you took the original bag file:

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag play 2015-03-24-13-13-12.bag

[INFO] [1427221486.993700128]: Opening 2015-03-24-13-13-12.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING] Bag Time: 1427220874.545656 Duration: 82.521750 / 82.553575

Done.

Figure 13 Turtle Replay of rosbag data

Turtle begins executing messages from its last location.

In its default mode rosbag play will wait for a certain period (.2 seconds) after advertising each

message before it actually begins publishing the contents of the bag file. Waiting for some duration

allows any subscriber of a message to be alerted that the message has been advertised and that

messages may follow. If rosbag play publishes messages immediately upon advertising, subscribers

may not receive the first several published messages. The waiting period can be specified with the -d

option.

Eventually the topic /turtle1/command_velocity will be published and the turtle should start moving in

turtlesim in a pattern similar to the one you executed from the teleop program. The duration between

52

running rosbag play and the turtle moving should be approximately equal to the time between the

original rosbag record execution and issuing the commands from the keyboard in the beginning part of

the tutorial. You can have rosbag play not start at the beginning of the bag file but instead start some

duration past the beginning using the -s argument. A final option that may be of interest is the -r option,

which allows you to change the rate of publishing by a specified factor. If you execute:

rosbag play -r 2 <your bagfile>

You should see the turtle execute a slightly different trajectory - this is the trajectory that would have

resulted had you issued your keyboard commands twice as fast.

53

After - the motion will start on playback from the current position of the turtle.

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag play -r2 2015-03-24-13-13-12.bag

[INFO] [1427221716.127268792]: Opening 2015-03-24-13-13-12.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING] Bag Time: 1427220874.545836 Duration: 82.521930 / 82.553575

Done.

Figure 14 Turtle rosbag replay at 2x speed

Recording a subset of the data

When running a complicated system, such as the pr2 software suite, there may be hundreds of topics

being published, with some topics, like camera image streams, potentially publishing huge amounts of

54

data. In such a system it is often impractical to write log files consisting of all topics to disk in a single

bag file. The rosbag record command supports logging only particular topics to a bag file, allowing a

user to only record the topics of interest to them.

To name the bag file and selectively record

(This option is the letter O)

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag record -O cmdvel /turtle1/cmd_vel

/turtle1/pose
[INFO] [1427222327.911823890]: Subscribing to /turtle1/cmd_vel

[INFO] [1427222327.914523800]: Subscribing to /turtle1/pose

[INFO] [1427222327.917503556]: Recording to cmdvel.bag.

tlharmanphd@D125-43873:~/bagfilesturtle$ ls

2015-03-24-13-13-12.bag cmdvel.bag

Move the turtle with the keys with focus on the teleop window. The -O argument tells rosbag

record to log to a file named subset.bag, and the topic arguments cause rosbag record to only subscribe

to these two topics. Move the turtle around for several seconds using the keyboard arrow commands,

and then Ctrl-c in the rosbag window to stop the rosbag record.

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag info cmdvel.bag

path: cmdvel.bag

version: 2.0

duration: 1:01s (61s)

start: Mar 24 2015 13:38:48.20 (1427222328.20)

end: Mar 24 2015 13:39:49.94 (1427222389.94)

size: 311.4 KB

messages: 3972

compression: none [1/1 chunks]

types: geometry_msgs/Twist [9f195f881246fdfa2798d1d3eebca84a]

 turtlesim/Pose [863b248d5016ca62ea2e895ae5265cf9]

topics: /turtle1/cmd_vel 112 msgs : geometry_msgs/Twist

 /turtle1/pose 3860 msgs : turtlesim/Pose

tlharmanphd@D125-43873:~/bagfilesturtle$ rosbag play cmdvel.bag

[INFO] [1427222827.531968073]: Opening cmdvel.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING] Bag Time: 1427222389.908203 Duration: 61.712115 / 61.743916

Done.

55

WATCH THE TURTLE MOVE!

Figure 15 Turtle moving with subset of rosbag data

The limitations of rosbag record/play
In the previous section you may have noted that the turtle's path may not have exactly mapped to the

original keyboard input - the rough shape should have been the same, but the turtle may not have

exactly tracked the same path. The reason for this is that the path tracked by turtlesim is very sensitive

to small changes in timing in the system, and rosbag is limited in its ability to exactly duplicate the

behavior of a running system in terms of when messages are recorded and processed by rosrecord, and

when messages are produced and processed when using rosplay. For nodes like turtlesim, where minor

timing changes in when command messages are processed can subtly alter behavior, the user should

not expect perfectly mimicked behavior.

56

APPENDIX I REFERENCES NEEDS UPDATING - REFERENCES

The textbook Learning ROS for Robotics Programming by Aaron Martinez is useful. The examples are

in C++.

A Gentle Introduction to ROS by Jason M. O’Kane is very readable and can be downloaded from the

site: http://www.cse.sc.edu/~jokane/agitr/agitr-letter.pdf

The author’s website is http://www.cse.sc.edu/~jokane/agitr/

These other ROS books might be helpful as referenced by O’Kane:

 ROS by Example by R. Patrick Goebel

 Learning ROS for Robotics Programming

by Aaron Martinez and Enrique Fernandez. The examples are in C++.

Always be sure to check of any changes in the Ubuntu or ROS distribution. This Turtlesim Guide is

written using Ubuntu 14.04 and ROS Indigo.

If you are new to ROS - don’t be impatient. There is a great deal to learn but the Turtlesim ex-

ample shown here should make things easier.

The ROS official tutorials are at these WEB sites: http://wiki.ros.org/turtlesim/Tutorials

ROS Tutorials Helpful for the Examples to Follow:

 ROS/Tutorials/UnderstandingNodes

 ROS/Tutorials/UnderstandingTopics

 ROS/Tutorials/UnderstandingServicesParams

Programming Robots with ROS, A Practical Introduction to the Robot Operating System – Morgan

Quigley, Brian Gerkey, William D. Smart 2015, O’Reilly

Other useful references are Listed in Appendix

GETTING STARTED WITH TURTLESIM
http://wiki.ros.org/turtlesim

GENTLE INTRODUCTION O’KANE CHAPTER 2
http://www.cse.sc.edu/~jokane/agitr/agitr-letter-start.pdf
TUTORIALS USING TURTLESIM – A LIST
http://wiki.ros.org/turtlesim/Tutorials

--

http://www.cse.sc.edu/~jokane/agitr/agitr-letter.pdf
http://www.cse.sc.edu/~jokane/agitr/
http://www.lulu.com/spotlight/pirobot
https://www.packtpub.com/hardware-and-creative/learning-ros-robotics-programming
http://wiki.ros.org/turtlesim/Tutorials
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/turtlesim
http://www.cse.sc.edu/~jokane/agitr/agitr-letter-start.pdf
http://wiki.ros.org/turtlesim/Tutorials

57

ROS CONCEPTS

ROS has three levels of concepts: the Filesystem level, the Computation Graph level, and the Community
level. These levels and concepts are summarized below and later sections go into each of these in greater
detail.

The filesystem level concepts mainly cover ROS resources that you encounter on disk, such as packages,
metapackages, manifests, repositories, messages, and services

The Computation Graph is the peer-to-peer network of ROS processes that are processing data together.
The basic Computation Graph concepts of ROS are nodes, Master, Parameter Server, messages,
services, topics, and bags, all of which provide data to the Graph in different ways.

The ROS Community Level concepts are ROS resources that enable separate communities to exchange
software and knowledge. These resources include distributions, repositories, ROS wiki, ROS answers, and
a Blog.

In addition to the three levels of concepts, ROS also defines two types of names -- Package Resource
Names and Graph Resource Names -- which are discussed below.

http://wiki.ros.org/ROS/Concepts

ROSCORE

From the ROS tutorial http://wiki.ros.org/roscore

roscore is a collection of nodes and programs that are pre-requisites of a ROS-based system. You must

have a roscore running in order for ROS nodes to communicate. It is launched using the roscore com-
mand.

ROS MASTER

The ROS Master provides naming and registration services to the rest of the nodes in the ROS system. It
tracks publishers and subscribers to topics as well as services. The role of the Master is to enable
individual ROS nodes to locate one another. Once these nodes have located each other they communicate
with each other peer-to-peer.
http://wiki.ros.org/Master

Clearpath diagram of Master

http://www.clearpathrobotics.com/blog/how-to-guide-ros-101/

ROS NODES AND TURTLESIM

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

ROS TOPICS AND TURTLESIM

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

ROSSERVICE
rosservice contains the rosservice command-line tool for listing and querying ROS Services

http://wiki.ros.org/ROS
http://wiki.ros.org/action/fullsearch/ROS/Concepts?action=fullsearch&context=180&value=linkto%3A%5C
http://wiki.ros.org/Names
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/roscore
http://wiki.ros.org/Nodes
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Master
http://www.clearpathrobotics.com/blog/how-to-guide-ros-101/
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://www.ros.org/wiki/Services

58

http://wiki.ros.org/rosservice

ROSSERVICE AND ROS SERVICE PARAMETERS
This tutorial introduces ROS services, and parameters as well as using the rosservice and rosparam
commandline tools.
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

http://wiki.ros.org/Parameter%20Server

http://wiki.ros.org/rosparam

http://www.cse.sc.edu/~jokane/agitr/agitr-small-param.pdf (Chapter 7 of O’Kane)

ROSSERVICE AND ROS TELEPORT PARAMETER

Let's bring the turtle to a known starting point using absolute teleportation. Its inputs are [x y theta]. The origin [0
0 0] is offscreen so we will start with [1 1 0]. The turtle should be facing to the right (0*).

rosservice call /turtle1/teleport_absolute 1 1 0

https://sites.google.com/site/ubrobotics/ros-documentation

USING RQT_PLOT, RQT_CONSOLE AND ROSLAUNCH WITH TURTLESIM
http://wiki.ros.org/rqt_plot

This tutorial introduces ROS using rqt_console and rqt_logger_level for debugging and roslaunch for
starting many nodes at once.
http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch

ROSBAG TURTLESIM EXAMPLE
This tutorial will teach you how to record data from a running ROS system into a .bag file, and then to play
back the data to produce similar behavior in a running system.

Keywords: data, rosbag, record, play, info, bag

TURTLESIM EXAMPLE
http://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data/

DATA LOGGING USING ROSBAG
http://www.fer.unizg.hr/_download/repository/p08-rosbag.pdf

INTRODUCTION TO TF AND TURTLESIM
This tutorial will give you a good idea of what tf can do for you. It shows off some of the tf power in a multi-
robot example using turtlesim. This also introduces using tf_echo, view_frames, rqt_tf_tree, and rviz.
http://wiki.ros.org/tf/Tutorials/Introduction%20to%20tf/

YAML Command LINE
Several ROS tools (rostopic, rosservice) use the YAML markup language on the command line. YAML was
chosen as, in most cases, it offers a very simple, nearly markup-less solution to typing in typed parameters.

For a quick overview of YAML, please see YAML Overview.

http://wiki.ros.org/rosservice
http://wiki.ros.org/rosservice
http://wiki.ros.org/rosparam
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/rosparam
http://www.cse.sc.edu/~jokane/agitr/agitr-small-param.pdf%20(Chapter%207%20of%20O'Kane)
https://sites.google.com/site/ubrobotics/ros-documentation
http://wiki.ros.org/rqt_plot
http://wiki.ros.org/rqt_console
http://wiki.ros.org/rqt_logger_level
http://wiki.ros.org/roslaunch
http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch
http://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data/
http://www.fer.unizg.hr/_download/repository/p08-rosbag.pdf
http://wiki.ros.org/turtlesim
http://wiki.ros.org/tf#tf_echo
http://wiki.ros.org/tf#view_frames
http://wiki.ros.org/rqt_tf_tree
http://wiki.ros.org/rviz
http://wiki.ros.org/tf/Tutorials/Introduction%20to%20tf/
http://wiki.ros.org/rostopic
http://wiki.ros.org/rosservice
http://wiki.ros.org/YAML%20Overview

59

http://wiki.ros.org/ROS/YAMLCommandLine

http://wiki.ros.org/ROS/YAMLCommandLine

60

APPENDIX II TURTLESIM MANIFEST (PACKAGE.XML)

tlharmanphd@D125-43873:~$ gedit /opt/ros/indigo/share/turtlesim/package.xml

<?xml version="1.0"?>

<package>

 <name>turtlesim</name>

 <version>0.5.2</version>

 <description>

 turtlesim is a tool made for teaching ROS and ROS packages.

 </description>

 <maintainer email="dthomas@osrfoundation.org">Dirk Thomas</maintainer>

 <license>BSD</license>

 <url type="website">http://www.ros.org/wiki/turtlesim</url>

 <url type="bugtracker">https://github.com/ros/ros_tutorials/issues</url>

 <url type="repository">https://github.com/ros/ros_tutorials</url>

 <author>Josh Faust</author>

 <buildtool_depend>catkin</buildtool_depend>

 <build_depend>geometry_msgs</build_depend>

 <build_depend>libqt4-dev</build_depend>

 <build_depend>message_generation</build_depend>

 <build_depend>qt4-qmake</build_depend>

 <build_depend>rosconsole</build_depend>

 <build_depend>roscpp</build_depend>

 <build_depend>roscpp_serialization</build_depend>

 <build_depend>roslib</build_depend>

 <build_depend>rostime</build_depend>

 <build_depend>std_msgs</build_depend>

 <build_depend>std_srvs</build_depend>

 <run_depend>geometry_msgs</run_depend>

 <run_depend>libqt4</run_depend>

 <run_depend>message_runtime</run_depend>

 <run_depend>rosconsole</run_depend>

 <run_depend>roscpp</run_depend>

 <run_depend>roscpp_serialization</run_depend>

 <run_depend>roslib</run_depend>

 <run_depend>rostime</run_depend>

 <run_depend>std_msgs</run_depend>

 <run_depend>std_srvs</run_depend>

</package>

61

APPENDIX III TURTLEBOT DIRECTORIES AND FILES

tlharmanphd@D125-43873:~$ locate turtlesim

02/22/16

tlharmanphd@D125-43873:~$ cd /opt/ros/indigo/lib/turtlesim

62

Appendix

A group of simple demos and examples to run on your TurtleBot to help you get started with
ROS and TurtleBot.

https://github.com/turtlebot/turtlebot_apps

If you really want the details:

 Graveyard/follower Remove capabilities dependancy for follower, graveyard capabilities v… 2 years ago

 software/pano 2.3.3 9 months ago

 turtlebot_actions 2.3.3 9 months ago

 turtlebot_apps 2.3.3 9 months ago

 turtlebot_calibration 2.3.3 9 months ago

 turtlebot_follower 2.3.3 9 months ago

 turtlebot_navigation Update CMakeLists.txt 9 months ago

 turtlebot_panorama 2.3.3 9 months ago

 turtlebot_rapps Merge branch 'indigo' of https://github.com/turtlebot/turtlebot_apps … 8 months ago

 .gitignore adding gitignore 3 years ago

 .hgignore added android_map_nav app 5 years ago

 README.md Create README.md 3 years ago

https://github.com/turtlebot/turtlebot_apps
https://github.com/turtlebot/turtlebot_apps/tree/indigo/Graveyard/follower
https://github.com/turtlebot/turtlebot_apps/commit/7985d68e1a37c1da48c1e23d48ee3c080df5e18a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/software/pano
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_actions
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_apps
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_calibration
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_follower
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_navigation
https://github.com/turtlebot/turtlebot_apps/commit/e49d54f3c5cf1f177603a560413f9f4f0fc62520
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_panorama
https://github.com/turtlebot/turtlebot_apps/commit/3e56a6358514088bce223b0b4433a7f1087ab36a
https://github.com/turtlebot/turtlebot_apps/tree/indigo/turtlebot_rapps
https://github.com/turtlebot/turtlebot_apps/commit/1dfde6a3be62732aba38b818066d7008c02cbd8f
https://github.com/turtlebot/turtlebot_apps
https://github.com/turtlebot/turtlebot_apps/commit/1dfde6a3be62732aba38b818066d7008c02cbd8f
https://github.com/turtlebot/turtlebot_apps/blob/indigo/.gitignore
https://github.com/turtlebot/turtlebot_apps/commit/2ca493e7897596b3522d860980de41b8072dba55
https://github.com/turtlebot/turtlebot_apps/blob/indigo/.hgignore
https://github.com/turtlebot/turtlebot_apps/commit/3ad5103072864b57b4251246777a99b0165ecb91
https://github.com/turtlebot/turtlebot_apps/blob/indigo/README.md
https://github.com/turtlebot/turtlebot_apps/commit/2091d7bc30434c5c044e093370df9cc7a9eb67d5

