3.3 FLOATING-POINT REPRESENTATION

The representation for numbers that we considered previously assumed that the radix
point was located in a fixed position, yielding either an integer or a fraction as the in-
terpretation of the internal machine representation. The programmer’s responsibility
would be to scale numerical operands to fit within a selected word length and then -
unscale the results to obtain the correct values. Of course, the radix point is not actu-
ally stored with the number, but its position must be remembered by the programmer.
! This method of representation is called fixed point. ‘
In practice, the machine value is limited to a finite range which is determined by
the number of binary digits used in the representation. For a 32-bit word, the range of
signed fixed-point integers is about +23! or +10*!. Thus, the limited range of fixed-
point notation is a drawback for certain applications. Furthermore, arithmetic units -
operating on fixed-point numbers generally have no capability of rounding results. As -
discussed in several references in the Further Reading section for this chapter, this '
limits the usefulness of fixed-point notation in scientific computing. :
To overcome many of the limitations of fixed-point notation, a notation that
is the counterpart of scientific notation is used for numbers in digital systems. The °
floating-point notation represents a number as a fractional part times a selected base
raised to a power. In the machine representation, only the fractional part and the
value of the exponent are stored. The decimal equivalent is written as

Nn=fxr® (3.19) ¢

where f is the fraction or mantissa and e is a positive or negative integer called the
exponent. The choice for the base is usually 2, although base 16 is sometimes used.

80 Representation of Numbers and Characters Chap. 3 "

A number of choices are presented to the designer of a floating-point format.
This applies whether the arithmetic operations are carried out by the CPU or its
coprocessor directly or by a software package containing routines for floating-point
arithmetic. The number of formats is bewildering and only recently has an attempt
been made to standardize floating-point arithmetic for computers.

The proposed IEEE standard has been adopted by Motorola for a number of
their products. This IEEE standard describes precisely the data formats and other
aspects of floating-point arithmetic required to provide consistent operation of a pro-
gram even when it is executed on different computer systems.

3.3.1 Floating-Point Formats

The typical floating-point format stores the fraction and the exponent together in an
m-bit representation. The choice for a fixed-length floating-point format is commonly
32 or 64 bits, referred to as single precision and double precision, respectively. Ex-
tended formats with m > 64 are occasionally used when greater range or precision is
required.

Once the length of the floating-point representation is chosen, a number of
choices for both the length and the format of the fraction and exponent are possible.
Since either or both could be negative as well as positive, a signed fraction and a signed
exponent are required. Finally, the interpretation of the bits within the floating-point
representation depends on the placement of the fraction and exponent.

Many floating-point formats employ a sign-magnitude representation for the
fraction. The most significant bit of the word is reserved for the sign, and this facili-
tates testing for a positive or negative number. The fraction is generally normalized
to yield as many significant digits as possible. Thus, in a base r system, the most sig-
nificant digit is in the leftmost position in the fraction. For nonzero numbers in the
binary system, the leftmost digit will be a 1. As the arithmetic unit or the program
shifts the digits in the fraction during arithmetic operations, the exponent is adjusted
accordingly. When normalized as a base 2 value, the magnitude of the fraction is

0.5 <|f|<1 (3.20)

unless the number is zero. The number of digits reserved for the fraction represents
a compromise between the precision of the fraction and the range of the exponent. A
typical single-precision format (32 bits) might contain an 8-bit exponent and a 23-bit
fraction, excluding sign.

An exponent could be represented in two’s complement or any other notation
that allows signed values. A different alternative, which permits the exponent to be
represented internally as a positive number only, is to add an offset value. This value is
often called an excess. For this format, positive bias or offset is added to all exponents
such that the number is read as

SKCESS

N = fre (3.21)

where €’ is the actual value of the stored exponent and N, is the positive offset. For
an L-bit exponent in a binary base, the positive number added is usually of the form

Ny = 281 (3.22)

Sec. 3.3 Floating-Point Representation 81

although the TEEE standard format discussed later uses a value of NV, — 1.

Example 3.22

One IBM floating-point format has the following representation for a 32-bit word:

(a) sign as the most significant bit (leftmost bit);
(b) next 7 bits as exponent with excess-64 or 40,6 with radix 16;
(c) next 24 bits as fraction in base 16.

Thus +1.0 is represented as
(0.1)16 X 161

for which the stored exponent becomes 41:6. The internal representation is

4110 000016 .

Example 3.23

One PDP-11 (Digital Equipment Corporation) floating-point format uses the following
conventions in a 32-bit word:

(a) sign as the most significant bit (leftmost bit);

(b) next 8 bits as exponent in excess-128 notation with radix 2;

(c) next 23 bits as fraction. These 23 bits are derived from a 24-bit fraction always nor-
malized (i.e., the leftmost bit will be a 1 in a nonzero number). The most significant
bit of the normalized fraction is not stored since it is always 1.

The representation of +12 is thus
0.115 x 21327128
and is represented internally as - 1 (W (>PE UJ
0 1000 010051000 0000 0000 0000 0000 000,.
Notice that the leading bit of the fraction is a 1 and it is not stored with the floating-point

number. This has been termed a hidden bit and would be restored by a floating-point
hardware processor when the value is processed.

EXERCISES

3.3.1.1. Discuss the various factors that influence the choice of the exponent length,

mantissa length, and choice of radix in a floating-point number. Compute
the various ranges for a choice of an L-bit exponent in excess notation, a k-
bit fraction, and a total length of m bits.

3.3.1.2. Express 1/32 in binary floating-point representation using an 8-bit excess-128

exponent and a 24-bit fraction with the leading bit implied. The order in the
word from left to right is sign, exponent, and then fraction (PDP-11).

3.3.1.3. Convert the numbers indicated to a 32-bit floating-point representation with

82

the characteristics: the leading bit (bit 31) is the sign of the number; the next

Representation of Numbers and Characters Chap. 3

Table 3.5 Internal Format by Bit Number

[s | e+127] 7 | jEE(E’

31 30 23 22 0 « bit number
(i) Single
[s | e+103 | ¥ |
63 62 52 51 0
(ii) Double

9 bits are the exponent in excess-256 notation and following bits are 22 bits
of fraction; and a negative number is represented as the integer’s two’s com-
plement of the positive floating-point number.

(a) +16.0; (b) —1.0.

3.3.2 Standard Floating-Point Format

Although the Motorola MC68332 processor does not provide floating-point instruc-
tions, many Motorola products support the standard floating-point format proposed
by the IEEE. These products include software routines, routines in read-only mem-
ory, and a coprocessor chip to support floating-point arithmetic for the M68000 family
Processors.

The basic format allows a floating-point number to be represented in single or
32-bit format as

N.n = (=1)52¢7127(1.%) (3.23)

where S is the sign bit, €’ is the biased exponent, and f is the fraction stored normal-
ized without the leading 1. Internally, the exponent is 8 bits in length and the stored
fraction is 23 bits long. A double-precision format allows a 64-bit representation with
a 11-bit exponent and a 52-bit fraction. Table 3.5 shows the format pictorially.

Various features of these floating-point formats are presented in Table 3.5 and
Table 3.6. Other formats called extended-precision formats are presented in the ref-
erences in the Further Reading section of this chapter.

Example 3.24

The numbers +1.0, +3.0, and —1.0 have the following representation in the standard
32-bit format:

(a) Since 1.0 = 1.0 x 2°, the internal value is 3F80 00001. :

(b) Since 3.0 = 1.5 x 2!, the exponent is 128 and the fraction is 1.100, without the
leading 1. Thus, the internal value is 4040 00004¢.

(c) Since —1 = —1.0 x 2°, the result requires the sign bit to be 1 in the representation
BF80 0000+6.

Sec. 3.3 Floating-Point Representation 83

Notation
Single Double
Length in bits
Sign 1 1
Exponent 8 11
Fraction 23+ (1) 52 +(1)
Total m=32+(1) m=64+(l)
Exponent
Max e’ 255 2047
Min e’ 0 0
Bias 127 1023
Note:
Fractions are always normalized and the leading 1 . _
(hidden bit) is not stored. ;;
.
EXERCISES %
’ b
3
3.3.2.1. Write the internal machine representation for the following numbers in the: ;
standard floating-point single-precision format: 3
(a) 0.5; (b)—0.5; (2 =T=8, -

33.2.2.

33.23.

Table 3.6 IEEE Standard Floating-Point

SRS A D e A oAl

What is the decimal value of the largest positive number that may be repre- |
sented in single-precision standard format if the biased exponent is limite
to a maximum of 254 when a valid number is being represented? (The valu
255 is reserved for special operands.)

Express the following numbers in the internal representation using standar
double-precision floating-point format:
(a) 7.0; (b) —30.

