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TRAINING AND OPERATING INDUSTRIAL
ROBOTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present invention claims priority to and the
benefit of U.S. Provisional Applications No. 61/662,646 (At-
torney Docket No. HRT-001PR), filed on Jun. 21, 2012, and
No. 61/676,586 (Attorney Docket No. HRT-007PR), filed on
Jul. 27, 2012, the entire disclosures of which are hereby
incorporated herein by reference. Reference is also made to
U.S. patent application Ser. Nos. 13/621,517, 13/621,519,
and 13/621,561 (Attorney Docket Nos. HRT-013A, HRT-
013B, and HRT-013C, respectively), filed on even date here-
with, the entire disclosures of which are likewise incorpo-
rated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates, generally, to robot
operation and training. More specifically, various embodi-
ments relate to the acquisition, organization, and use of task-
related information by industrial robots to facilitate perfor-
mance of tasks in an autonomous manner.

BACKGROUND OF THE INVENTION

[0003] Industrial robots perform a variety of tasks involv-
ing the movement and manipulation of physical objects. A
typical industrial robot may, for example, have one or more
arms, equipped with grippers, that allow the robot to pick up
objects at a particular location, transport them to a destination
location, and put them down in accordance with particular
coordinates, thereby, for example, stacking them or placing
them into cardboard boxes present at the destination location.
[0004] Controllers for existing industrial robots are typi-
cally programmed in languages that specify exact positions
and trajectories for the robot arm(s). During execution of a
programmed task, the robot arm moves a reference coordi-
nate associated with its most distal link to an exactly specified
new position, following an exactly specified trajectory. The
success of existing industrial robots is due to their operation
in constrained environments, which allows the person pro-
gramming the robot—who is usually involved in the process
of structuring the robot’s workspace—to predict, with high
confidence, which objects will be present in the workspace at
all times, and where they will be located. As a result, moving
the reference point on the robot arm to particular coordinates,
via particular trajectories, and then opening or closing the
gripper of the robot (or applying or releasing a suction grip-
per), lead to real-world actions that achieve the task desired of
the robot.

[0005] A six-dimensional vector can be used to uniquely
specify the reference point in three-dimensional space, along
with the orientation of the most distal link. Thus, if the robot
arm itself has six or fewer degrees of freedom, that vector
uniquely determines the settings for all the joints of the robot.
Ifthe robot arm has more than six degrees of freedom, further
specification of the desired pose of the arm is required to
remove any ambiguity.

[0006] Recent programming systems for industrial robots
have input layers that circumvent exposing the programmer
to the six-dimensional vectors, with varying degrees of suc-
cess. In one approach, the end points of the trajectories are set
by physically moving the arm to a desired pose and position
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and then causing the robot to record that position. Various
methods for moving the arm are used in practice. The most
common method utilizes an external teaching pendant, i.e., a
handheld control terminal, which is plugged into the robot
controller only during the teaching phase. The pendant usu-
ally includes an LCD screen, a joystick or similar steering
device, one or more buttons, and sometimes a full keyboard,
which collectively allow the user to control and move the
robot. Another technique involves equipping the most distal
link of the robot arm with a load cell, and having the user
switch the arm into a mode in which it responds to forces
applied to the load cell. In this approach, the user guides the
robot to a desired position by hand, possibly adjusts with the
teaching pendant, and then gives a command to record the
position. The command may be given, for example, via a
button on the pendant or via speech.

[0007] Regardless of the input method used, conventional
industrial robots are programmed for vectorized movement in
a coordinate system relative to the robot. While some pro-
gramming systems allow for inputs from external sensors to
identify external locations, these, too, are translated into the
coordinate system of the robot in order for the robot to move
its reference point to the desired location. The translation
relies on knowledge of the location and orientation of the
robot relative to the external sensor; typical positional-accu-
racy requirements for industrial robots are in the sub-milli-
meter range. Consequently, if either the robot or the external
sensor is moved, even if only a small distance, relative to the
objects in the world, the robot will move its reference point to
the wrong place in the world and, thus, fail at its task.

[0008] Further, while existing robots may use external-sen-
sor input to detect, e.g., objects to be manipulated or equip-
ment such as boxes or conveyor belts, such input is merely
used as a gating signal for the next task. The robot’s interac-
tion with the external objects itself must be carefully pro-
grammed in terms of coordinates and trajectories, and only if
the world is ordered as expected by the programmer will the
robot carry out its task successfully, i.e., without collisions or
misplacements. For example, in order to cause a robot to
place objects in a cardboard box, e.g., in a three-by-four grid,
the programmer has to specify the twelve sets of coordinates
corresponding to the locations in the box where objects are to
be placed. Further, to ensure that neither the robot itself nor
the grasped objects will collide with the side of the box, the
programmer has to specify the order in which the twelve spots
are to be filled, as well as the approach directions and trajec-
tories (which might be different for objects placed against the
boundary of the box as opposed to objects placed at the
center). Of course, the robot will only be able to pack objects
within a narrow size range. If an object is larger, or differently
shaped, than the programmer assumed, the process will be
unsuccessful because, once again, the robot’s actions have
been so highly constrained.

[0009] Similarly, when programming a robot to pick up
objects from a conveyor belt, the programmer relies on a
controlled, predictable operation of the conveyor belt. Typi-
cally, an external sensor, such as a break-beam sensor
attached to the conveyor, allows the robot to detect objects on
the conveyor. Any time the beam is broken, an object of the
desired type moving along with the conveyor is assumed to be
the cause of the break. The speed of the conveyor is implicitly
coded into the robot program in the form of a coordinate for
apick-up location and a time delay measured from the time of
the break. An explicit velocity vector may also be included,
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allowing the robot gripper to move at the same velocity as the
object on the conveyor belt when the gripper is activated. As
long as the assumptions about the conveyor position and
velocity are correct, these specifications guarantee that the
robot will pick up the desired objects from the moving con-
veyor; otherwise, because the robot possesses no task-level
knowledge, it will fail.

[0010] Robot-control programs usually include control
logic that deals with error conditions. Due to the coordinate-
level specificity that generally governs the robot’s behavior,
the response options in case of an error are limited. For
example, the robot may simply stop operating, and perhaps
issue an error alarm, when an essential assumption underly-
ing a particular programmed task is violated, or the world
deviates otherwise from its expected state.

[0011] Accordingly, there is a need for robots that respond
more flexibly to their surroundings and tolerate greater devia-
tions from default assumptions, and which, preferably, may
be used and configured for execution of complex tasks based
on intuitive interactions.

SUMMARY OF THE INVENTION

[0012] The present invention relates to robots capable of
performing various tasks including the manipulation and
movement of physical objects, as well as to methods of pro-
gramming and/or training such robots. Execution of the tasks
is, generally, based on the robot’s perception of its environ-
ment. Accordingly, in various embodiments, the robot is
equipped with one or more cameras or other sensors that
enable it to detect, identify, and localize objects to be manipu-
lated, as well as particular pieces of machinery or equipment
that are ancillary to its tasks (such as, e.g., conveyor belts or
storage boxes). In general, the detection and identification of
such objects triggers performance of one or more tasks asso-
ciated with them, and continuing visual or other sensory input
thereafter informs the mode and manner of execution. For
example, having identified an object to be moved to a particu-
lar destination, the robot may direct one of its cameras to
monitor its path so as to detect any obstacles and avoid col-
liding with them. The tasks may be stored in the robot as
supplied or defined, or refined, by training.

[0013] In accordance with various aspects and embodi-
ments of the invention, the robot is generally not (or not
exclusively) programmed in the usual sense—i.e., by means
of hard-coded instructions. Instead, it may be trained via
direct interaction with a human. The human trainer may, for
example, guide the robot and/or any of its appendages to a
desired location, and show it how to manipulate an object by
adjusting an appendage relative to the object, pushing buttons
to open or close the appendage, etc. Such mechanical input
may be supplemented with user interaction via a screen and
ordinary input devices such as, e.g., keyboard, mouse, or
touch pad to specify or refine an already-stored task. For
example, the robot may display an image corresponding to its
field of view on a screen and allow the user to show it objects
by pointing at them on the screen (e.g., using a mouse or
touch-sensitive screen). Once an object to be manipulated has
been identified, the robot may display a list of possible
manipulations, each corresponding to a pre-stored task, from
which the user may select by clicking on a desired one. In
addition, certain parameters associated with a task, such as a
maximum speed associated with a robot motion, may be
entered, e.g., in text format via the keyboard. Importantly, in
many embodiments, interaction between the robot and its
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trainer is structured in a way that requires little or no special-
ized technical expertise from the trainer.

[0014] As a result of the robot’s training, data structures
representing the various tasks may be created and stored in
memory associated with the robot’s control system. In gen-
eral, these representations do not, or at least do not com-
pletely, define the tasks in terms of spatial coordinates and
trajectories of the robot appendage(s), but instead correspond
to generic, spatially unspecified motions relative to objects in
the environment. Thus, during execution of a particular task,
the robot supplements the representation of that task with
information about the robot’s surroundings, and the objects
and equipment therein, as it perceives them at that time.
Taking the robot’s environment into account in this manner
obviates the need to make precise assumptions about the
environment at the training stage, and inherently provides the
robot with more flexibility to carry out its tasks, automatically
handle errors, and take advantage of changed circumstances.
Further, centering the training on individual tasks triggered
by respective sets of circumstances allows the trainer to teach
these tasks in any order, regardless of the sequential order in
which tasks that make up a more complex procedure typically
need to be executed. Conversely, the robot may select or
propose a task based on its perception of its environment;
detection of a particular type of object, for example, may
cause therobot to review the tasks associated with that object,
and further narrow these possibilities based on additional
perceived objects—e.g., detection of a box object in combi-
nation with an empty conveyor belt may trigger tentative
selection of an already-stored task involving picking up and
moving boxes onto the conveyor belt.

[0015] In various embodiments, this flexibility in robot
training and in the robot’s performance of its tasks is facili-
tated by a two-tiered data structure. The first tier comprises
hard-coded prototypes of primitive or complex tasks (com-
plex tasks generally being series of primitive or elementary
tasks such as “pick up,” “move”, or “put down”), as well as of
objects, locations, equipment, and/or other generic categories
relevant to the tasks. Each prototype specifies what informa-
tion is required to fully define a particular member of the
respective category or class; typically, a prototype takes the
form of a list of “fields” or “slots” corresponding to various
attributes of the class and having associated parameter values.
The second tier includes instances of the prototypes, which
are created during the training phase by populating at least
some of the fields based on, generally, a combination of
default assumptions, the robot’s perception of its environ-
ment at the time of training, and direct input from the trainer.
Slots that remain open during this stage may be filled at the
time of execution based on the robot’s perception. Instances
typically do not, or not completely, define tasks or locations in
terms of absolute coordinates, but in reference to objects in
and parameters of the environment. Instances of some proto-
types may reference instances of other prototypes. For
example, an instance of a task may specify a class of objects
to be manipulated or a type of equipment to be used for that
purpose, where the object class and/or equipment are, them-
selves, defined in class- or equipment-specific instances.

[0016] The two-tiered representation of tasks and other
categories—in generic prototypes and specific instances of
these prototypes—facilitates tuning the degree to which the
robot is controlled via hard-coded instructions along a con-
tintum of specificities, leaving any missing specifics to be
filled in during training and/or execution. Further, it allows
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defining robot tasks at varying levels of complexity, ranging
from primitive tasks to complex tasks that involve many
movements and manipulations. For some applications, e.g.,
where the robot is stationary, the anticipated states of the
environment fall within narrow limits, or a particular order of
executing subtasks is required, constraints may be imposed
by programming complex tasks directly into the robot and
reducing the training phase to minimal customizations. For
other applications, maximum flexibility at the training and/or
execution stage may be desirable, calling for more abstract
definitions of primitive prototypes that, once instantiated,
serve as building blocks for more complex tasks.

[0017] Accordingly, in a first aspect, the present invention
provides a robot trainable, via interactions with a human
trainer, to manipulate objects. In various embodiments, the
robot includes one or more appendages for manipulating
objects and a controller for operating the appendage(s). These
embodiments further include computer memory for storing a
library of prototypes at least one of which defines a type of
task to be performed by the appendage on an object, a per-
ception system for receiving physical input (e.g., mechanical
or visual input) from the human trainer related to the task, a
training module for creating an instance of the task prototype
by specifying at least one attribute thereof based on the physi-
cal input, and a task-execution module for executing the
instance via commands to the controller, thereby causing the
appendage to perform the task. The task generally involves
movement of the appendage and/or manipulation of the
object. Herein, the term “manipulation” refers to a robot
motion that involves physical contact between the robot (e.g.,
a gripper or other end-effector) and the object, and connotes
any mechanical operation on the object, e.g., grasping, mov-
ing, lifting, striking, etc. Manipulation may or may not
involve structural change to the object. The instance may
define the task in terms of generic, spatially unspecified
motions of the appendage, e.g., in terms of motions defined
without specifying spatial trajectory, or in terms of motions of
the appendage relative to the object and/or its environment.

[0018] The perception system may include one or more
pressable buttons, knobs, touch-sensitive pads, touch-sensi-
tive cuffs, and/or cameras (or other visual sensors), and may
be configured to receive physical information about the object
or an environment thereof. The robot controller may be con-
figured to operate in zero-force gravity-compensated mode in
response to a physical input (e.g., touching of the cuff). In
some embodiments, the robot further includes one or more
output devices responsive to the user interface system for
providing task-related feedback to the trainer. Such feedback
may, for example, include an indication of robot status, a
request for further input, or an error alert, and may take the
form of graphics overlaid onto a robot camera view. The
library of prototypes may include prototypes defining an
object class, a type of equipment, or a location. In some
embodiments, the training module creates an instance of the
objectclass based on visual input about a member ofthe class;
the object subject to the manipulation may be a member of a
class of objects referenced by the instance.

[0019] In another aspect, the invention is directed to a
method of robot learning based on interactions with a human
trainer. In various embodiments, the method involves receiv-
ing physical input from the trainer regarding a task to be
performed by the robot, and, in response to and based at least
in part on the input, selecting a prototype associated with the
task from a library of stored prototypes. An instance of the
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prototype is created and stored in a database. The instance
specifies a robot movement or a robot manipulation to be
performed on the object, and may define the task in generic,
spatially unspecified terms. The method may further include
specifying one or more attribute of the instance based on the
physical input.

[0020] The physical input may be or include mechanical
input and/or visual input. For example, in some embodi-
ments, receiving physical input involves sensing physical
contact with the trainer and/or an object; acquiring one or
more images of the trainer, the object, or the environment;
and/or tracking a position of the robot appendage as the
appendage is being moved by the trainer. In response to and
based at least in part on the input, a prototype defining an
object class may be selected and instantiated so as to create a
representation of the object in memory. The method may
further include providing feedback to the trainer, e.g., by
indicating a status of the robot, requesting additional input
from the trainer, and/or alerting the trainer to an error. Feed-
back may be provided in the form of graphics overlaid onto a
robot camera view or in the form of haptic feedback.

[0021] In a third aspect, a robot for manipulating objects
within an environment based on physical perception thereof
is provided. In various embodiments, the robot includes one
or more appendages for manipulating an object and a control-
ler for operating the appendage(s), a perception system for
receiving physical information about the object and/or the
environment from one or more sensors, an instance database
including a plurality of instances at least some of which
specify tasks to be performed by the appendage on the object,
and a task-execution module for selecting one or more of the
instances based on the received information. Optionally, an
attribute of the selected instance may be specified based on
the physical information. The task-execution module
executes the selected instance(s) via commands to the con-
troller. Again, the instances may define the task in generic,
spatially unspecified terms, such as in terms of motions of the
appendage relative to the environment or the object, and/or
without specifying spatial trajectories.

[0022] The instance database may further include one or
more instance defining one or more object classes, types of
equipment, or locations. The task-defining instance(s) may
reference any of the other instances (i.e., an object class,
equipment, or location instance). In one embodiment, the
task-defining instance references an object class, and the task
execution module is configured to cause the robot appendage,
upon detection by the perception system of an object belong-
ing to the object class, to perform the task on the detected
object. The perception system may include one or more cam-
eras, e.g., in conjunction with a computer vision system.
Further, the perception system may include mechanical input
devices such as one or more pressable buttons, knobs, touch-
sensitive pads, or touch-sensitive cuffs.

[0023] In a further aspect, a robot-implemented method of
manipulating an object within an environment is provided.
The method involves receiving sensor input about the object
and/or the environment (e.g., acquiring one or more images
thereof, or detecting physical contact with an object in the
environment), and, based on the sensor input and a database
of instances specifying tasks to be performed by the robot on
the object, selecting at least one of the instances, optionally
specifying one or more attribute(s) of the selected instance(s),
and executing the selected instance(s) so as to cause a robot
appendage to manipulate the object in accordance therewith.
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Executing the instance(s) may involve instantiating a behav-
ior associated with the instance. The behavior may include a
plurality of threads having sets of conditions associated there-
with, and executing the instance may involve monitoring the
threads for satisfaction of the conditions, which may trigger
transitions between threads. Task execution may also involve
running one or more behaviors that prevent collisions of the
robot with itself or an object in the environment. The instance
database may include, in addition to task-defining instances,
instances of various object classes, each object class being
associated with at least one of the task instances. Based on the
input, the object class to which the object belongs may be
identified, and the executing step may then be performed in
accordance with a task instance associated with the object
class.

[0024] Instill another aspect, the invention relates to a robot
for manipulating objects within an environment based on
physical perception thereof. In various embodiments, the
robot includes one or more appendages for manipulating an
object and a controller for operating the appendage(s); a
perception system for receiving physical information about
the object and the environment from at least one sensor (e.g.,
a camera and computer vision system and/or one or more
touch-sensitive detectors); an instance database with a plu-
rality of instances at least some of which specify tasks to be
performed by the appendage on the object, where each task
specifies an object and an action to be performed thereon and
is defined in generic, spatially unspecified terms; and a task-
execution module, responsive to the perception system, for
executing the tasks via commands to the controller.

[0025] In some embodiments, the task-execution module
generates, on the fly and based on the physical information, a
trajectory corresponding to the task in a coordinate system
associated with the robot. In other embodiments, the task-
execution module continuously monitors the object and,
based thereon, causes the robot appendage to move toward
the object without computing trajectory coordinates. Move-
ment toward the object may continue as long as a pre-condi-
tion associated therewith is satisfied, as determined by the
task execution module based on the monitored object. The
pre-condition may, for example, be or include the absence of
physical contact between the appendage and the object.
[0026] In another aspect, a method for manipulating
objects within an environment thereof includes receiving sen-
sor input about the object and/or the environment (e.g., by
acquiring images of the object). In various embodiments,
based on (i) the sensor input and (ii) an instance database
comprising a plurality of instances specifying tasks (to be
performed by the robot on the object) in generic, spatially
unspecified terms, at least one of the task instances is
executed so as to cause a robot appendage to manipulate the
object in accordance therewith. Executing the task instance
may involve generating an on-the-fly trajectory in a coordi-
nate system associated with the robot. Alternatively, it may
involve continuously monitoring the object and, based
thereon, causing the robot appendage to move toward the
object without computing trajectory coordinates. For
example, task execution may include determining whether a
pre-condition associated with the task (e.g., absence of physi-
cal contact between the appendage and the object) is satisfied
and, if so, continuing movement toward the object.

[0027] In some embodiments, executing the task instance
includes instantiating a behavior associated with the instance.
The behavior may include a plurality of threads with associ-
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ated sets of conditions; the threads may be monitored for
satisfaction of the conditions, which may trigger transitions
between threads. The method may, further, involve running a
behavior preventing collisions of the robot with itself or an
object in the environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The foregoing will be more readily understood from
the following detailed description of the invention, in particu-
lar, when taken in conjunction with the drawings, in which:
[0029] FIG. 1 is a block diagram illustrating a system in
accordance with various embodiments;

[0030] FIGS. 2A and 2B are perspective views of a robot in
accordance with various embodiments;

[0031] FIG. 2C is a block diagram illustrating an imple-
mentation of the computational and control functionality of a
robot in accordance with various embodiments;

[0032] FIG. 3 graphically illustrates a prototype library in
accordance with various embodiments;

[0033] FIG. 4 depicts a data structure corresponding to a
prototype in accordance with various embodiments;

[0034] FIG. 5 illustrates the relationship between proto-
types and instances in accordance with various embodiments;
[0035] FIG. 6 is a flow chart illustrating training and task-
execution methods in accordance with various embodiments;
and

[0036] FIG. 7 graphically illustrates the relationship
between instance of data structures and robot behaviors in
accordance with various embodiments.

DETAILED DESCRIPTION

1. System Overview

[0037] FIG. 1 illustrates the architecture of an exemplary
control system 100 for training and operating robots in accor-
dance with various embodiments hereof. The system includes
several functional components (depicted as boxes with sharp
corners), implemented in hardware and/or software, as well
as a number of data structures (depicted as boxes with
rounded corners). The functional components generally oper-
ate in parallel and communicate with each other and with the
data structures (although various functional components that
are implemented in software, while depicted as self-operative
modules, are ultimately executed by a processor). FIG. 1
indicates communication paths with arrows. Dashed arrows
indicate information flowing in the direction of the arrow;
double-headed dashed arrows indicate bi-directional infor-
mation flow; and solid arrows indicate that control commands
are passed in the direction of the arrow.

[0038] To enable the robot to act upon its environment, the
system 100 includes a perception system (or subsystem) 102,
which typically includes one or more cameras for acquiring
images of the environment, as well as a suitably programmed
computational facility (e.g., a software module whose
instructions are executed by a general-purpose processor) for
processing and interpreting the images. The cameras typi-
cally operate in the visible spectrum, but some embodiments
may utilize, alternatively or additionally, infrared cameras or
cameras detecting other frequency ranges within the electro-
magnetic spectrum. In some embodiments, one or more ste-
reo cameras or, more generally, a depth-sensing camera sys-
tem (e.g., a KINECT camera) may be used. Collectively, the
cameras (or other optical sensors) and the image-processing
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facility form a computer vision system. The perception sys-
tem 102 may also include additional sensors, such as, for
example, temperature sensors, pressure sensors, humidity
sensors, touch pads, haptic sensors, position and orientation
sensors (e.g., GPS or gyromagnetic sensors), velocity sensors
and/or accelerometers, electrical sensors, and/or magnetic
sensors, as are well-known in the art. Further, in addition to
sensors integrated into the system 100 itself, the system 100
may include an interface 104 for receiving signals from exter-
nal and third-party sensors and sensor systems. This interface
104 facilitates supplementing the robot’s internal sensing
capabilities with capabilities available in the environment in
which the robot is deployed.

[0039] The system 100 further includes a robot controller
106 that monitors and alters robot positions, kinematics,
dynamics, and forces, and, in communication with and
accepting commands from the robot controller 106, one or
more joint-level controllers 108 that drive individual motors
and actuators to move the robot and/or its moving parts
(which generally includes the appendage(s) and end-effector
(s), and may further include, e.g., the camera(s) or other
sensors) as directed by the robot controller 106. The robot
controller 106 may exchange information with the perception
system 102. For example, when the controller 106 causes a
robot appendage or end-effector to move, a camera integrated
into the appendage may monitor the motion to provide feed-
back to the controller 106. Conversely, information provided
by the controller 106 to the perception system 102 may aid the
execution of visual tasks; if the robot camera is, for example,
tasked with tracking an object, information from the control-
ler 106 about the location of the camera relative to the
expected object location may enable the camera to predict the
approximate size of the object in the image, allowing it to
limit the size of the region within its field of view that it needs
to search for the object. By continuously exchanging infor-
mation, the controller 106 and perception system 102 may
assist each other in tracking an object both visually and
mechanically, e.g., in order to pick it up from a conveyor belt.

[0040] At the heart of the system 100 is the task-execution
module 110, which manages the robot’s behavior as the robot
does useful work, and the training module 112, which allows
a user to train the robot, and also provides cues to people
about the intentions and state of the robot during its normal
operation. Interactions between the robot and the user gener-
ally take place via components of the perception system 102
and/or via traditional user interface devices such as, e.g.,
keyboard, mouse, or touch screen. Accordingly, the task-
execution and training modules 110, 112 are configured to
receive information from, and send control commands to, the
perception system 102. Furthermore, both modules 110, 112
exchange information with and provide commands to the
robot controller 106 to direct the controller’s performance of
subtasks. The task-execution module 110 and the training
module 112 generally do not receive control commands from
each other or from any other component. Rather, they are the
source of control for the entire system 100. For example, in
response to information received from the perception system
102 (e.g., the detection of a new object), the training module
112 or task-execution module 110 may initiate a new action or
primitive task via commands to the controller 106. By con-
trast, during execution of the primitive task, the controller 106
may be guided directly by the perception system 102, without
the need for the information to pass through one of the mod-
ules 110, 112 first.
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[0041] The task-execution module 110 and the training
module 112 are tied together by, and interact through, a set of
shared representations; the instructions defining the two mod-
ules enable user manipulation of these shared representa-
tions, which are created during robot training by instantiating
prototypes of tasks, objects, and/or places (and, possibly,
other categories), resulting in a database of instances 114. The
prototypes themselves are typically organized in a prototype
library 116. In some embodiments, the task-execution mod-
ule 110 and the training module 112 are integrated into one
module that provides both training and task-execution func-
tionality; this avoids duplication of functions that are used by
both modules.

[0042] The system 100 may also include one or more user
models 118 that include data relevant to ensuring that the
task-execution and training modules 110, 112 interact with a
person appropriately (which may include, for example, iden-
tifying whether a particular person is an authorized user and
imposing safety constraints on movement when any person
enters the robot’s operating zone). The user model may be
informed by data from the perception system (e.g., a camera
image of the user’s face), and exchanges information bi-
directionally with the task-execution and training modules
110, 112. All these data structures—the prototype library,
instance database, and user model(s)—are generally stored in
memory (e.g., in mass storage permanently and in memory
partitions during robot operation) and maintained by the sys-
tem 100.

2. Robot Design

[0043] FIG. 2 shows a robot 200 in accordance with one
embodiment. The robot 200 has two arms 202, each having
seven degrees of freedom provided by suitable (and conven-
tional) rotational joints 204. Each joint 204 desirably employs
a series elastic actuator, enabling the robot to sense external
forces applied to it, such as, e.g., forces resulting from unex-
pected collisions. Mounted at the end of each arm is a parallel-
jaw gripper 206 that allows the robot to grasp, lift, and move
objects. The robot 200 also has a head with a screen 208 and
status lights, which serve to inform the user of the robot’s
state. The head and screen 208 can rotate about a vertical
access, and nod about a horizontal axis running parallel to the
screen 208.

[0044] Further, the robot 200 includes five cameras. It has
one camera 209 in each of its two wrists so that the robot 200
can “see” objects it is about to pick up and adjust its grippers
206 accordingly. Further, ithas two cameras 210, side by side,
in its chest that provide a wide-angle view of the workspace
and allow the robot 200 to visually detect equipment or
objects to be manipulated. Finally, the robot 200 has a camera
211 above the screen 208 that is oriented outwards to detect
people in the environment. The robot 200 may also include
range sensors in each wrist, and a ring of sonar sensors in its
head that are used to detect moving objects in the environ-
ment; see copending application Ser. No. 13/456,915, filed on
Apr. 26, 2012 and hereby incorporated by reference.

[0045] In addition to these sensors for visually and/or
acoustically detecting objects, the robot 200 may include a
number of touch-sensitive sensors and mechanical features
onits arms 202 and body that facilitate mechanical interaction
with a person (e.g., a trainer). For example, on each wrist, the
robot has a cuff 212 that, whenever touched, switches the
robot arm into a “zero-force gravity-compensated” mode that
allows the user to easily move the arm from place to place for



US 2013/0345873 Al

training purposes In this mode, the robot controller 106 oper-
ates the robot arm so as to act like a set of links with low-
friction bearings at each joint while compensating for gravity
so that the arm does not drop to the lowest possible configu-
ration (but instead acts as if it were in outer space). To accom-
plish gravity compensation, the controller 106 takes account
of the instantaneous kinematic configuration of the robot,
based on a detailed model of the robot’s mass distribution,
and applies torques to each joint to counteract gravity. The
arm moves freely in response even to small forces, impeded
merely by its inertia, as long as the wrist cuff 212 is held by the
trainer. On the wrist cuffs 212 are two buttons 214 that can be
used in the training process, for example, to map out areas by
clicking one of'the buttons at distinct points (e.g., the vertices
of'a polygon), to confirm correct visual selection of an object,
or to manually cause the gripper to open or close.

[0046] Further, the robot 200 includes four identical sets
214 ofknobs and buttons (each set collectively called a “navi-
gator”) on its arms, chest, and back. The navigators 214 allow
the user to respond to information displayed on the screen 208
(e.g., by selecting menu items, switching between training
and execution mode) and enter numbers (e.g., to indicate in
how many rows and columns objects are to be packed in a
box) or text (e.g., passwords or object and task names) via a
digital rotary knob. The robot 200, moreover, includes two
touch pads 216 on its shoulders, allowing a person coming up
behind the robot 200 to tap the robot 200, thereby indicating
on which side of the robot 200 she intends to stand when
training the robot. These visual, sonar, and touch-based sen-
sors are representative rather than limiting, and all are part of
the robot’s perception system 102.

[0047] The robot 200 described above is, of course, only
one of many possible robot embodiments in accordance with
the invention. Various components and features can be modi-
fied in manners that will be readily apparent to persons of skill
in the art. For example, the robot may, generally, have any
number of arms (or, more generally, appendages), and each
arm may have any number of degrees of freedom. The links of
the arms need not be joined by rotational joints with one
degree of freedom (such as, e.g., hinge joints), but may, for
example, include ball-and-socket joints that provide two rota-
tional degrees of freedom, or rail systems that facilitate trans-
lational motion. Further, instead of grippers with fingers that
close around an object, the robot may include suction grippers
or other means of holding an object. Alternatively or addi-
tionally, the robot may have other types of end-effectors, e.g.,
tools (such as a drill, saw, etc.) or measuring devices (such as
e.g., scales, gauges, etc.). The robot may also include legs,
wheels, or similar means of moving its body as a whole.
Furthermore, additional and/or different types of sensors may
be installed in various locations of the robot’s body and
appendages. Likewise, the screen 208 and status lights may
be placed in different locations, or replaced with or supple-
mented by different components for communicating informa-
tion to the user. For example, the robot may include a speaker
and/or microphone for audio-communication.

[0048] The control system 100 and its various components
may be integrated into the robot, or kept (at least in part) in a
separate control facility in communication with the robot. For
example, in some embodiments, the task execution and train-
ing modules 110, 112 are implemented in software stored in
memory of a general-purpose computer (e.g., in system
memory—typically random-access memory (RAM)—dur-
ing use, and/or on a hard drive, CD-ROM, or other non-
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volatile storage medium for long-term storage), and executed
by the computer’s processor. The user prototype library 116,
instance database 114, and user model 118 may, likewise, be
stored long-term in non-volatile memory, and loaded into
system memory during use. The modules may be pro-
grammed in any suitable programming language, including,
without limitation, high-level languages such as C, C++, C#,
Ada, Basic, Cobra, Fortran, Java, Lisp, Perl, Python, Ruby, or
Object Pascal, or low-level assembly languages. Communi-
cation between the robot and the computer may be estab-
lished via, e.g., Bluetooth, WLAN, an 802.11 protocol, an
Ethernet network, or any other wired or wireless connection.
Alternatively, if the size of the robot allows, the computer or
computer terminal may be built into the robot.

[0049] Further, instead of using a general-purpose com-
puter, the control system may employ any of a variety of other
processing devices, including, without limitation, special-
purpose computers, microcontrollers, application-specific
integrated circuits (ASICs), field-programmable gate arrays
(FPGAs), digital signal processors (DSPs), or programmable
gate arrays (PGAs). Such devices may, likewise, be mounted
in or on the body, head, or appendages of the robot, or con-
tained in a separate control facility that communicates with
the robot via cables or wireless signals. In various embodi-
ments, combinations of multiple different processing devices
are used. Furthermore, in some embodiments, the overall
control functionality is distributed between components
physically integrated into the robot, and external components
in communication with the robot. For example, the robot
controller 106 and joint-level controllers 108, as well as hard-
ware for acquiring camera images or other signals (and, pos-
sible, performing basic image/signal processing steps) may
be located in the robot, whereas high-level data structures and
processing functionality may be provided in a remotely
located facility.

[0050] FIG. 2C illustrates an exemplary control system in
block-diagram form. The system includes several ARM pro-
cessors (reduced instruction set computer (RISC) processors
developed by ARM Holdings, Cambridge, UK) that serve as
the joint-level controllers 108. All other computational func-
tionality, including the task-execution and training modules
110, 112 and the image-processing facility and related vision
algorithms, are implemented on a general-purpose computer
250, embedded in the robot, which include a central process-
ing unit (CPU) 252 (e.g., a quad-core Intel processor), system
memory 254, and non-volatile mass storage devices (such as
one or more hard disks and/or optical storage units). The
computer 250 further includes a bidirectional system bus 256
over which the CPU 252, memory 254, and storage devices
256 communicate with each other and with internal or exter-
nal input/output devices such as the screen 208, the hardware
components of the perception system 102 (e.g., the cameras
209, 210, 211, navigators 214, wrist cuffs 212), external
sensors 104, and/or traditional input devices (e.g., a keyboard
or a mouse), as well as with the ARM processors 108.

[0051] The system memory 254 contains instructions, con-
ceptually illustrated as a group of modules, that control the
operation of CPU 252 and its interaction with the other hard-
ware components. An operating system 260 (e.g., Gentoo
Linux) directs the execution of low-level, basic system func-
tions such as memory allocation, file management and opera-
tion of mass storage devices 256. At a higher level, one or
more service applications 262 integrate robot controller 106,
task-execution module 110, training module 112, and image-
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processing module. The prototype library 116, instance data-
base 114, and user models 118 may be stored on the mass
storage devices 256 and/or, during operation, in the system
memory 254. In one embodiment, the robot controller 106
runs on the CPU 252 with a 100 Hz loop, whereas the vision
algorithms and the training and execution modules run at a
rate closer 10 Hz. The joint level controllers, if implemented
as ARM processors, run, in one embodiment, at about 1000
Hz. Various alternative ways to implement control system
100 will be readily apparent to persons of skill in the art, and
can, like the exemplary system depicted, be implemented
without undue experimentation.

3. Task Representation and Operational Principles

[0052] Robot control systems in accordance with various
embodiments represent tasks in memory in terms of primitive
robot operations (i.e., robot movements or manipulations of
objects), as well as types of places and classes of objects,
fixtures, or equipment associated with these operations. More
specifically, hard-coded prototypes of such primitive opera-
tions and related categories are stored in a prototype library
116, and serve as templates for the creation of instances of the
prototypes that are used by the task execution module 110.
[0053] FIG. 3 illustrates the structure of an exemplary pro-
totype library 116 (or “template library”) containing three
classes of prototypes: prototypes for primitive operations or
tasks 300, prototypes of places 302, and prototypes of visu-
ally recognizable objects 304. The primitive tasks 300 may
include operations for, e.g., grasping, picking up, or putting
down an object, inserting an object through a hole, or moving
a robot appendage (that does or does not hold an object), to
name just a few. Prototypes for places 302 may include, for
example, a source or destination location of a particular type
of'object, a place where objects can be stacked, a rectangular
array corresponding to the arrangement of parts in a carton or
other carrier, or a conveyor belt. Prototypes for visually iden-
tifiable objects 304 may include classes of objects to be
manipulated, and/or classes of specialized fixtures or equip-
ment to be found in the environment (such as, e.g., conveyor
belts, cardboard boxes, a weighing scale, a testing machine,
etc.). Some classes of objects (e.g., cardboard boxes or con-
veyor belts) may have specialized visual routines associated
with them, while others may belong to a generic object pro-
totype. The robot instantiates an object prototype for each
object it is visually trained to recognize.

[0054] While primitive tasks, places, and objects are useful
prototype classes for many robot applications contemplated
herein, they in no way limit the organization of prototypes
into various categories. Other prototype categories that may
be used in various contexts include, for example, complex-
task prototypes (which may reference and specify the order of
primitive tasks, or directly specify the motions making up the
complex task), equipment prototypes (e.g., for containers,
transportation vehicles, etc.), tool prototypes (e.g., for drills,
saws, rasps, etc.), or time and sequence prototypes (e.g., for
triggers associated with the beginning or end of certain tasks,
a particular order of primitive tasks constituting a more com-
plex task, etc.). In general, the prototypes within each class or
category are characterized by similar types of information. As
shown in FIG. 3, some entities may have associated proto-
types in more than one category. For example, a conveyor belt
may have both an object prototype and a place prototype
associated with it, with the object prototype requiring speci-
fication of a particular visual technique for recognizing the
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conveyor belt, and the place prototype requiring specification
of its function (e.g., as source or destination location of
objects) and/or its location in spatial coordinates. Conceptu-
alizing prototypes as belonging to one of a number of proto-
type categories may be helpful during the programming stage
(i.e., when the prototype library is created), and may, but need
not, be reflected in the structure of the prototype library 116.
While some libraries have sub-libraries for the various cat-
egories of prototypes, other libraries store the prototypes
indiscriminately in one general memory location.

[0055] FIG. 4 illustrates the general structure of a prototype
400. The prototype 400 provides a template data structure
consisting of multiple slots 401, each including a slot label
402 and a slot filler 404 (or an empty field for receiving a slot
filler). The prototype 400 further associates with each slot 401
a method 406, or set of methods, that may be used to fill the
slot 401. The slot filling methods 406 are selected from a pool
408 of available procedures.

[0056] The process of training the robot involves selecting
prototypes from the library 116, instantiating them (i.e., con-
structing data structures, called “instances,” based on the
templates), and filling in values in the instance slots. The
manner in which slots are filled may vary with the category of
prototype. As shown in FIG. 4, the prototype 400 may include
default slot fillers 404 for some slots 401. Any such default
fillers are copied over when the prototype is instantiated.
Additional slots are filled through user input and/or appropri-
ate inferences, using any of the filling methods 406 associated
with the particular slot. In some embodiments, as the user fills
slots, slot-filling procedures for opportunistically filling fur-
ther slots based on the already-filled slots become available;
in this way, the slot-filling procedures 406 provide active
defaults and cross-object or cross-category slot data as more
is learned from the user about a particular task. Usually, the
user has the ability to manually change auto-filled values if
they are not appropriate for the task. In general, as slot values
are changed, the procedures associated with the prototype are
re-invoked to propagate the information to any dependent
fillers in others slots. Thus, a prototype is generally instanti-
ated by a process of successive refinement.

[0057] FIG. 5 illustrates the relationship between a proto-
type 500 and a corresponding instance 502. The prototype
500, which directs the arrangement of objects in a stack,
contains all the slots necessary for execution of the task (e.g.,
the location of the arrangement, the maximum number of
objects in the arrangement, the type of the arrangement, and
the type of objects to be arranged), and includes default fillers
for some slots (e.g., an indication that the arrangement is a
stack, and 25 as the maximum number of objects to be
stacked). Further, the prototype 500 associates various filling
procedures with the slots. In the instance 502 of prototype
500, the default fillers are adopted or modified based on
known or observed information, and additional slots are filled
in as the robot is trained or begins the task. Collectively, the
values of the slot fillers determine the properties of the
instance. Slot fillers may be actual data (e.g., the coordinates
of the stack location), or references to instances of other
prototypes. For example, the objects to be stacked may be
boxes, which are further specified in a “box” instance. As
another example, a prototype for a complex task may require
specification of various subtasks, and slots for such subtasks
may be filled with references to primitive-task instances. The
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object-oriented relationships among prototypes are readily
specified and maintained in, e.g., a relational or object-ori-
ented database.

[0058] Each time a prototype is instantiated during train-
ing, a unique instance is created. In general, a given task may
involve multiple instances of the same prototype. For
example, objects may need to be stacked in multiple loca-
tions, e.g., depending on their weight, and each of these
locations corresponds to a separate instance 502 of the stack
prototype 500. As soon as an instance is created from a
prototype, the task execution module 110 is generally able to
operate with it, even if some of the slots in the instance remain
unfilled. If data for one of the unfilled slots is later needed
during execution of a task involving the instance, the task
execution module 110 may, for example, interrupt the execu-
tion and solicit input from the user to fill the slot. Some slots
may never need to be filled (or default values overridden),
depending on the task.

[0059] FIG. 6 summarizes the use of prototypes and
instances in accordance with various embodiments. In gen-
eral, during the training phase, instance creation is triggered
when the robot receives information via its perception system
102 and/or via direct user input (step 600). The robot uses the
information to select a suitable prototype from the prototype
library 116 (step 602) and, after or while instantiating the
prototype (step 604), fill in one or more of the slots in the
instance (step 606). For example, a robot trainer may turn the
robot’s camera towards an object, causing the robot to, first,
create an instance of a generic “object” prototype based on the
visual appearance of the object and, next, display a list of
primitive tasks associated with the object prototype. Based on
selection of one of the primitive tasks by the trainer, a proto-
type of that task is thereafter instantiated. The user may guide
the robot’s execution of the primitive task with respect to the
object, thereby providing values to fill slots of the task
instance. Instances thus created are stored in an instance
database 114. The trainer can, at any time, terminate training,
allowing the task-execution system to operate with the
instances that have been specified. Later, the user can resume
training, either in response to a request for more information
from the robot, of her own accord.

[0060] Once sufficient instances have been created with
sufficiently many slots filled, the robot may operate in task-
execution mode and interpret these instances. In this mode,
the robot generally waits to receive input from the user or
from its perception system 102 (step 610) that triggers a
particular task. Based on the input, the robot selects one or
more instances (step 612) (e.g., an instance of an object it
detects, an instance of a primitive task associated with the
object, and an instance of a location where the task is to be
performed), and, where appropriate, fills in open fields in the
instance(s) (step 614). The task is then executed in accor-
dance with the instance(s) (616). Primitive tasks (such as,
e.g., “pick up” or “put down”), in particular, operate as rules
with parameters, pre-conditions, and post-conditions speci-
fied by the respective primitive-task instances, as explained in
more detail below. A (non-primitive) task is internally repre-
sented as a collection of rules that run opportunistically in
execution mode. The trainer is generally not exposed to the
representation or details of the rules, and does not even need
to be aware of their existence.

[0061] Accordingly, rather than being taught a series of
motions in terms of six-dimensional coordinates, the robot, in
accordance with various embodiments, is taught a series of
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rules. In order to be able to translate these rules into actual
motions during the execution phase, the robot maintains, at all
times, a three-dimensional self-model of the locations and
orientations of its body, head, arms, and any other actuated
elements; typically this is implemented as a database relating
elements and locations at a task-appropriate level of specific-
ity (e.g., directional. Places that the robot needs to reach
during performance of its tasks may be specified in coordi-
nates relative to the robot, in terms of visually recognizable
external objects and devices, or by reference to fiducial mark-
ers attached to things in the environment.

4. Perception, User Interaction, and Training

[0062] Various embodiments of the invention rely on the
robot’s ability to visually detect and/or identify objects and
peopleinits environment. Such visual detection may, in itself,
be a task that the robot needs to be trained to perform. Train-
ing generally involves the robot’s continuous perception of
the environment, coupled with input and feedback from a
human trainer. For example, to teach the robot to visually
recognize a particular object, the trainer may first orient one
of the robot’s cameras such that the object appears in the
camera view, which may be displayed on the screen 208 in the
robot’s head. The trainer may point at the object in the camera
view, e.g., using a mouse or touchscreen. Alternatively, the
robot’s computer vision system may attempt to identify the
object of interest based on one or more rules; for example, the
system may, by default, select the object in the center of the
camera view or an object in the foreground of the image.
Foreground and background may be distinguished based on
depth information obtained, for instance, with a stereo cam-
era or a separate depth sensor, or derived from two different
but overlapping camera views. Trainer input may be used to
confirm or reject the robot’s automatic object selection. Once
the object of interest has been indicated to the robot, the
computer vision system may generate an outline of the object
in the image, thereby identifying all the pixels it deems to
belong to the object. This group of pixels may be identified
based on, for example, brightness, color, or depth informa-
tion; suitable algorithms are known to persons of skill in the
art and include, among others, edge-detection algorithms.
The user may, again, provide feedback to indicate whether the
robot’s computer vision system has correctly outlined the
object, and cause corrections if necessary (e.g., by re-orient-
ing the camera).

[0063] Next, the training module 112 creates an instance of
the identified object. For some objects, the instance is an
on-the-fly representation of the visual appearance of the
object, created from a generic “object” prototype that requires
specification of a vision model (including data structures and
associated algorithms) that facilitates subsequent recognition
of the same (or the same kind of) object. For example, the
image of the object may be stored in the instance as a template
for correlation-based matching with subsequently acquired
images. Alternatively, a particular shape may be fitted to the
object outline, and its parameter values stored with the
instance for later comparisons, along with thresholds for the
allowable deviation from the template parameters. Details of
these and other vision models and techniques are known to
persons of skill in the art of computer vision, and can be
implemented in embodiments of the present invention with-
out undue experimentation. In general, different vision mod-
els may be more or less suitable for different types of objects.
Accordingly, the trainer may select a suitable model for the
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object the robot is being trained to recognize, or, alternatively,
the robot may try different models and select the one that
yields the best recognition performance, as determined, for
example, based on user feedback. Regardless of the vision
model used, the computer vision system of the trained robot
does not distinguish between an individual object and a mem-
ber of class of objects having the same appearance.

[0064] For some types of objects, the robot may have spe-
cial prototypes stored in its prototype library 116 and utilize
associated special visual-perception algorithms. For
example, conveyor belts may be recognized based on the
repeated and continuous motion of objects on the belt or of the
belt itself, and cardboard boxes may be identified as such
based on their flat surfaces, rectangloid shape, and cardboard
coloration. Similar visual-detection algorithms may be used
for a variety of other particular classes of objects. Which
algorithms run at any given time to detect objects within their
respective scopes may depend on the current task of the robot
or on a characterization of its environment. For example, the
robot may not need to visually search its environment for
cardboard boxes unless its task involves placing objects into
boxes or stacking the boxes.

[0065] Inaddition to detecting and identifying objects, the
robot’s perception system also serves to detect and/or identify
people, including users who provide training and/or informa-
tion required during task execution. In various embodiments,
the robot continuously scans its environment for people,
using, e.g., face detection and/or motion detection through
sonar. Further, its control logic makes the assumption that
when any of its buttons, touch panels, knobs, or wrist cuffs is
activated, a person is responsible for such activation; the
person’s location may be estimated from the location of the
activated control in the robot’s self-model. During training,
the robot may use this information to direct its screen 208
towards the person, and follow the person around as he moves
in the robot’s workspace. In execution mode, information
about people’s locations is used, for instance, to avoid colli-
sions, i.e., to ensure safe operation. Further, beyond merely
detecting the presence of a person, the computer vision sys-
tem may identify particular users, e.g., based on face-tem-
plate matching. This capability may be used for security, i.e.,
to ensure that only authorized users access the robot’s control
system and/or to tailor access privileges to the user. Further, it
may be used to adjust user-robot interactions based on previ-
ous interactions with a particular user. For example, if mul-
tiple persons are involved in the robot’s training over multiple
sessions, the robot may, in a session with one particular user,
suggest the next training objective based on the where that
user left off in the previous training session.

[0066] In general, user-robot interaction involves bi-direc-
tional information flow. The user may, in various embodi-
ments, provide input to the robot in a manner that mimics
human interaction, such as mechanically (e.g., by physically
moving the robot’s arm, tapping the robot on the shoulder, or
grabbing the robot’s wrist) or visually (e.g., by standing in the
field of view of one of the cameras and waving, pointing at an
object, etc.). Additionally or alternatively, the user may con-
trol the robot by manipulating specialized robot controls on
the robot’s body and appendages (e.g., by pressing buttons,
turning knobs, etc.), and/or enter information and instructions
via traditional user input devices (such as mouse and key-
board). Further, in some embodiments, the robot includes a
microphone and speech recognition software that allow it
process voice commands. User input, however manifested to
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the robot, is recognized by the training module and used to
guide the perception system 102 until the desired object is
identified and analyzed—i.e., compared to existing proto-
types and instantiated based on a matching or a generic pro-
totype. User input is further employed, as described below, to
specify object attributes.

[0067] Conversely, the robot may inform the user of its
internal state and/or request input via its screen 208 and/or
status lights. The screen 208 may display a traditional graphi-
cal user interface with text, windows, icons, etc., and—alter-
nately or simultaneously—one or more camera views,
optionally overlaid with robot-generated graphics (e.g., an
object outline) that convey information in an intuitive manner.
In some embodiments, the robot is also configured to convey
information mechanically. For example, as the user moves the
robot’s arm, the robot may provide haptic feedback, warning
the user, for example, of an impending collision with another
part of the robot or an external object. Furthermore, to
enhance user experience, the robot communicates its status,
in some embodiments, by engaging in human-like behavior.
For example, when the robot, during execution of a task,
encounters unforeseen circumstances that require further
input, the robot may move its head around and display a
puzzled-looking face on its screen 208.

[0068] In the context of training the robot for a particular
task, user input is generally used to create instances (of tasks,
objects, places, etc.) and fill in slots in the instances. The
training module 112 may fill some slots based on observa-
tions of user actions via the perception system 102, and some
based on explicituser input. For example, to teach the robot to
pick up an object, the trainer may select the prototype for the
primitive operation “pick up” from a drop-down menu or list
displayed on the screen 208, and then bring the robot arm
above the object. The robot’s vision system then detects the
object and outlines it. If the user acknowledges correct selec-
tion of the object, e.g., by pressing a designated button on the
wrist cuff, the training module 112 sets up a new instance of
the generic object prototype, with a suitable representation of
the appearance of the object. Further, the training module 112
uses the new object instance to fill the slot of the “pick-up”
instance that indicates the object to be picked up. It also sets
up an instance of a pick-up location, which, by default, is the
location where the object was shown to the robot. The object
instance just created fills the slot of the location instance that
indicates what objects can be found at that location, and the
location instance fills the slot in the “pick-up” instance that
specifies where to pick up objects. The trainer then shows the
robot how to grasp the object relative to its visual appearance.
This process may involve manipulation and manual adjust-
ment of the robot gripper and/or fingers by the trainer; for
example, the trainer may orient the robot’s fingers relative to
the object and press buttons to open and close the fingers.
Alternatively, the robot may make the adjustments itself,
taking into account feedback provided by the user, e.g., via
the traditional user interface. For example, the robot may
display “virtual grippers” on a camera view of the object, and
allow the user to drag the virtual grippers across the screen;
the robot then adjusts its physical grippers based on the loca-
tion of the virtual grippers relative to the camera view of the
object.

[0069] In some embodiments, the trainer may be given a
choice between different interactions available for certain
steps in the training process. For example, to indicate a loca-
tion where a task or subtask is to be performed (such as
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pick-up or destination location, or a test jig for measuring a
property of the object), the user may either point to the loca-
tion on the screen, or, alternatively, move the robot arm to the
location. To move the arm, the user may grasp the robot by the
cuft on one of its wrists, thereby switching the robot arm to
zero-force gravity-compensated mode, in which the robot
controller attempts to make the robot arm appear to have zero
gravitational mass and move readily in response to the person
dragging it by the cuff. In some embodiments, the user can
also reconfigure the arm, should it have more than six degrees
of freedom, by pushing on any of its links. As another
example, to teach the robot how to arrange objects, e.g., in an
array in a cardboard box, the user may physically guide the
robot through the motions, or visually convey the desired
arrangement, e.g., by dragging graphic representations of the
objects into a virtual cardboard box on the screen. As will be
appreciated from these examples, different types of interac-
tions may be preferable (e.g., more convenient, more accu-
rate, etc.) for different tasks. Regardless of the details of the
robot-user interaction, the trainer works with the robot at the
level of objects, ancillary equipment, and locations in the
world, rather than specifying coordinates and trajectories of
the robot appendages; in other words, training involves the
application and creation of task-level rules that apply to vary-
ing environments and objects rather than particular spatial
parameters having no applicability beyond a specific task
instance. Further, the trainer need not teach subtasks in the
sequential order in which they are normally to be carried
out—rather, he shows the robot what actions to take in par-
ticular circumstances, resulting in the creation of prototype-
associated rules.

[0070] User interactions similar to those employed during
training may also take place during the robot’s execution of
tasks, e.g., when the robot halts the process to await further
instructions, or when the user wants to modify the manner of
execution in a particular case. The feedback provided by the
user is translated by the training module 112 into adjustments
to or modifications of task-associated rules. Further, the
robot’s perception system 102 generally operates in the same
manner during the execution phase as it does during training,
detecting objects, people, mechanical forces, etc. While the
perception system 102 has been described herein with
emphasis on visual and mechanical sensations (including
touch and mechanical forces), it may also, for certain appli-
cations, provide perception capabilities for other types of
physical input (such as temperature, electric and magnetic
fields, etc.), and such input may be employed in the creation
of instances and execution of tasks.

5. Robot Behaviors and Task Execution

[0071] Robot actions are generally controlled by the task-
execution module 110, both during the performance of useful
work and during training. Typically, the task-execution mod-
ule 110 runs many behaviors in parallel. In this context, the
term “behavior” is used in reference to “behavior-based
robotic systems,” and generally denotes a collection of pro-
cessor-executable instructions relevant to a particular robot
function (such as, e.g., monitoring the input of a sensor or
processing an image), which may operate continuously, or
only in certain circumstances when activated; in general, a
behavior is more primitive than a task, and indeed, a task is
carried out by the interaction of multiple behaviors, some
running continuously, and some being triggered when their
preconditions to operate become valid as the result of earlier
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behaviors. Multiple behaviors can interact by sending mes-
sages (e.g., data or instructions) to each other. Typically, each
behavior is executed as an autonomous process in an object-
oriented configuration and has local memory allocated to it.

[0072] In general, a behavior is adapted to accept specific
inputs and, as a result of computations and internal-state
changes, to provide specific outputs. Inputs may be provided,
for example, through sensors (e.g., sensors of the perception
system 102 or external sensors 104), data structures accessed
by the behavior, or parameters passed over from other behav-
iors. Outputs include, for example, signals that select sensors
for activation or deactivation, or requests for the robot con-
troller 106 to execute particular primitive operations. For
example, a behavior may process a primitive-task instance in
conjunction with sensed locations of objects referenced by
the instance to compute, on the fly, a trajectory that the robot
can traverse to complete the task. Alternatively to computing
a complete trajectory with start and end coordinates, the robot
may determine a desired direction of motion and then move
an appendage in that direction until a termination condition is
met. For example, to perform the task of gripping an object,
the robot may move its hand and gripper in the vertical direc-
tion until the gripper contacts the object or, in a situation
where the palm of the robot hand should never touch the top
of the object, until the hand is some fixed height above the
surface on which the object to be grasped is sitting so that the
fingers will come down on either side of the object as the hand
is lowered. In some embodiments, the task-execution system
dynamically computes and re-computes trajectories based on
the current position, goal position, and incoming information
from the vision system.

[0073] Incertain embodiments, each behavior is organized
for execution purposes into one or more “threads” that run in
parallel in a threading module within the task-execution mod-
ule 110. Herein, a “thread” is a piece of computer code that
defines a finite-state machine (i.e., a finite number of states,
along with conditions that trigger transitions between the
states). Typically, the threads await input conditions that
match an (often complex) set of conditions, and then initiate
actions, either in controlling the robot or sending out a mes-
sage. Sometimes, many thousands of threads run simulta-
neously in order to carry out a particular task the robot has
been trained to perform.

[0074] In various embodiments, the robot behaviors each
belong to one of two general categories of behaviors: built-in
behaviors, which always run in the background independent
of'the task, and behavior instances that are coupled to instan-
tiated primitive tasks and places. The built-in behaviors may,
for example, provide safety for people as well as the robot,
invoke the training module 112 when appropriate, and initiate
diagnostics upon detection of anomalous conditions or for
routine maintenance purposes. They are generic behaviors
that operate in parallel with all specific tasks. Due to their
existence, the user need not include error-handling proce-
dures in the robot training Conventional control systems for
industrial robots, by contrast, usually require potential errors
to be handled within the program code associated with a
particular task.

[0075] In certain embodiments, the task-execution module
110 continuously runs a self-collision-prevention behavior,
which prevents the arms (or, more generally, appendages) of
the robot from colliding with each other or with other parts of
the robot. This behavior uses the robot’s self-model as input.
When the user moves an arm around, holding on to its cuff in
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zero-force gravity-compensated mode, the self-collision-pre-
vention behavior increases the robot-generated force on the
arm from zero to counter any force applied by the user that
might result in a collision with another part of the robot. The
resistive robot-generated force increases as the user-guided
arm, or portion thereof, gets closer to another part of the robot
or another portion of the arm. The resistive force plays two
roles. First, it makes it impossible, or nearly impossible, for
the user to cause a collision, as the user, in order to do so,
would have to apply forces exceeding those that the robot is
capable of generating. Second, it gives the user haptic feed-
back, implicitly signaling that she is doing something wrong.
The self-collision-prevention behavior is also active when-
ever the task-execution module 110 is trying to carry out a
particular task (e.g., moving or manipulating an object), obvi-
ating the need for other behaviors that give commands to
move an arm to worry about potentially causing a collision
with, e.g., the second arm. The self-collision-prevention
behavior ensures that the arms do not collide, waiting, if
necessary, for the second arm to get out of the way before
allowing the motion of the first arm to proceed, and, further,
signaling the required waiting period to the requesting behav-
ior, so that the latter can execute another task in the meantime
if desired.

[0076] A second behavior that is, in certain embodiments,
always active when the task-execution system 110 is running
is the collision-detection behavior, which detects when an
arm unexpectedly collides with an external object (or person).
Unexpected collisions can occur, for example, with a person
moving through the robot’s workspace, or with an object that
has been moved into the workspace. To facilitate collision
detection, the joints of the robot arms include, in some
embodiments, series elastic actuators capable of measuring
forces on respective joints. Further, the task-execution mod-
ule 110 may maintain forward-kinematic and -dynamic mod-
els of'each arm, enabling the module 110 to predict, based on
commands for robot motion, the profile of forces that oughtto
be measured on each joint. When the measured forces diverge
significantly from these predictions, the collision-detection
behavior infers a collision with an unexpected obstacle. It
stops all motion immediately, waits for a short period of time,
and then resumes the motion that resulted in the collision,
more slowly than previously, to determine whether the
obstacle has been removed. If unexpected collisions no
longer occur, it allows the task-execution module 110 to
continue carrying out its task. On the other hand, if the object
does not disappear after a specified maximum number of
waiting periods, the collision-detection behavior shuts down
the task-execution module 110, and awaits user instructions
to restart.

[0077] Further built-in behaviors coordinate the vision
algorithms running in the perception system 102. They pass
the visual descriptions of objects the robot has been trained to
recognize to the computer-vision system, and activate the
detection algorithms associated with the cameras on the
robot’s wrists when the end-effectors are not moving in order
to see whether any of the objects are below the end-effectors.
They may also activate vision algorithms on the chest cam-
eras to monitor the environment for any changes that could be
investigated with the wrist cameras. Other behaviors coordi-
nate requests to the vision algorithms to look for specialized
objects, such as cardboard boxes or conveyors, when the task
at hand involves such objects. Since computer vision is com-
putationally expensive, vision behaviors typically employ a
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priority scheme to allocate computation time to the various
algorithms based on circumstances and present need, leaving
enough computational capacity for all the other modules of
the robot’s control system. When objects are recognized, their
locations in the world, relative to the robot, are typically
broadcast to all the other behaviors (which, again, typically
execute autonomously in an object-oriented fashion) in the
task-execution module that need to know about them. Such
automatic propagation of information via messages between
behaviors is akey factor in enabling robots in accordance with
various embodiments to adapt the details of task execution to
changing positions of the robot itself and/or of objects related
to the task. In some embodiments, the relevant objects are
continuously tracked in the robot’s coordinate system, allow-
ing the instantiated primitive tasks to use current object loca-
tions to generate on-the-fly trajectories for the robot append-
age(s).

[0078] In general, the robot control system may include
many other built-in behaviors that are active at all times. For
example, dedicated behaviors may be used to ensure that the
robot is acting in a safe manner when the user model reports
the nearby presence of a person, to maintain good working
conditions for the robot, e.g., by controlling built-in lighting,
and/or to calibrate and/or maintain the calibration of the
robot. Different embodiments may utilize different built-in
behaviors, depending on the requirements of their respective
applications.

[0079] The second category of behaviors comprises instan-
tiated behaviors corresponding to instantiated primitive tasks,
places and/or other types of instances. Similarly, built-in
behaviors that govern robot actions during the training phase
may be included. Some behaviors are used both for training
and during task execution; for example, a behavior for mov-
ing the end-effector so as to center an object in the view of a
camera mounted therein can be used both to create an instance
of the object during training and to recognize and/or grip the
object later during task execution. Such dual-use behaviors
may be programmed into both the training module 112 and
the task-execution module 110, or provided for in one merged
module. The behaviors themselves are instances of behavior
prototypes or templates. The templates may be stored in the
prototype library 116, and their instantiations in the instance
database 114; however, since the training module 112 does
not, in general, interact with the behaviors, it may be prefer-
able to store the behavior templates and instantiated behav-
iors as part of the task execution module 110.

[0080] FIG. 7illustrates the relationship between behaviors
and the instances associated with them at the example of a
primitive-task instance 700 for moving an object. The behav-
ior 702 associated with the instance 700 (stored as records,
with associated slots/attributes, in the instance database 114
shown in FIG. 1) includes multiple threads 703 that govern
task execution and error handling; for example, one thread
(conceptually executed by the task-execution module 110,
though in reality by the system processor) may monitor the
state of the robot’s grippers to ensure that the gripper, in fact,
holds an object, and another thread may initiate the motion
upon a signal from the first thread. Each thread 703 has access
to all the slots in the instance 700—this access is what asso-
ciates the behavior 702 with the instance 700. The threads 703
further have access to a shared memory 704. Incoming mes-
sages 706, e.g., from other behaviors or from sensors, can be
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placed in the shared memory 704, and data stored in the
shared memory 704 can be copied into outgoing messages
708.

[0081] Thebehaviors instantiated for places generally keep
track of the objects that are present at the respective locations.
For example, a behavior associated with an output stack may
maintain a counter of the number of stacked objects by moni-
toring messages from the appropriate “put-down” behavior
instance that references the stack as the place where objects
are to be put down. Suppose that, during training, the system
was told that the stack should never exceed a height of ten
objects. Then, when there are nine or less items stacked, the
instantiated stack behavior communicates to the instantiated
put-down behavior that it is available to be acted upon (i.e.,
that another object may be stacked on top). Once the put-
down behavior signals that it has successfully completed the
operation, the stack behavior updates its count. When there
are ten items on the stack, it tells the put-down behavior that
it is full, thereby blocking further operation of the put-down
behavior. However, the stack behavior accepts new inputs
from the vision system, and if it receives a message that the
number of objects has changed, it resets its count. In this way,
the robot can automatically coordinate task-execution with a
person. It stacks objects until the specified maximum number
is achieved, and then stops stacking until the objects are
removed by some entity other than a robot, such as a person,
at which time the robot resumes stacking. Similar behaviors
may be used, for example, to monitor the number of objects
packed in a box, place objects in the box until the box is fully
packed, and adjust actions when a human interferes, e.g., by
placing an object into the box or removing an object from the
box herself.

[0082] In scenarios where stacks can be created (or boxes
packed) in multiple locations, the instantiated put-down
behavior may access a list of those locations, allowing the
robot, once one stack is full, to continue stacking objects in
one of the other locations. Depending on which stacks are
removed, the robot may adapt its actions and change the place
where it is putting objects purely based on messages sent
between behaviors. Further, if multiple different sorts of
objects are available, say, on a conveyor belt, the robot may
automatically tailor its behavior to opportunistically work on
whatever objects are both available and have a non-full stack
(or box). Thus, circumstances during task execution may
dictate the precise order of operations. The person training the
robot need neither specify the order of operations, nor make
the rules that determine the order during execution explicit
(although the trainer is free modify the behaviors that the
robot executes). Rather, the instantiated primitive tasks and
places, along with the behaviors associated with them, come
to an intelligent response to the situation at hand by sending
messages to each other.

[0083] For further illustration how various behaviors
within the task-execution module 110 cooperate, consider the
following interplay between instantiated behaviors for the
primitive tasks of picking up and putting down objects. Sup-
pose, the robot has been trained to recognize a particular type
of object, say (for ease of reference), a widget. Suppose,
further, that the trainer first showed the robot a particular
place and taught it to put down the object at that place, and that
he then showed the robot a conveyor belt, and taught it to pick
up any widget it detects there. In various embodiments, this
scenario results in instantiated pick-up and put-down behav-
iors, each having an associated instantiated data structure

Dec. 26, 2013

with a number of filled slots, and receiving messages from
other behaviors as well as sensory systems. In other words,
training interactions result in rule-level changes to specific
robot behaviors through alteration of associated slot values.

[0084] The threads ofthe behaviors may be programmed as
part of the task-execution module to make the behaviors act as
rules with respective pre-conditions and post-conditions. For
example, pre-conditions for the pick-up behavior include that
the robot’s hand or gripper is empty, that it is above the
approximate location of the conveyor as of the time of train-
ing (the location being stored in a slot of the instantiated data
structure), and that a widget is available on the conveyor (the
widget itself being specified in a slot of the data structure).
When all three pre-conditions are met, the pick-up behavior
initiates a coupled object-tracking operation between the
vision system (which is part of the perception system 102)
and the robot controller 106. Once these two system compo-
nents report that the object is being tracked (e.g., in a view
provided by a camera in the robot’s hand), the pick-up behav-
ior causes the robot controller to move the robot hand down-
wards and close its fingers around the object. If the behavior
receives, at any time, a message that tracking is lost, a clean-
up thread of the behavior returns the hand to an appropriate
height above the conveyor and waits for another object to
come by.

[0085] Once the robot controller reports that something is
grasped between the fingers (e.g., based on measurements of
the distance between fingers or of a force exceeding a set
threshold), the pick-up behavior sends a message that the
hand holds a widget (since “widget” was the type of object
specified in the pick-up instance). Receipt of this message by
the put-down behavior satisfies two of the pre-conditions of
that behavior: it now knows that the robot hand holds an
object, and that the object is a widget. Thus, rather than being
based on direct perception of the object in hand, satisfaction
of the pre-conditions of the put-down behavior is inferred
from the state of the (carefully written) pick-up behavior,
which assumes that, if it has successfully operated under its
pre-conditions, there is a widget in the robot’s hand, and
sends a message to that effect. To ensure that the pre-condi-
tions for the put-down behavior remain satisfied, the robot
controller continuously sends the status of finger separation
to the put-down behavior; thus, ifthe robot accidentally drops
the object, or if a person comes and takes the object out of the
robot’s hand, before the put down location is reached, one of
the pre-conditions is no longer satisfied, and the put-down
behavior, consequently, does not try to stack a non-existent
widget at the destination location. On the other hand, if the
pre-conditions are still satisfied when the destination (which
is stored in the associated data-structure instance) is reached,
the put-down behavior activates and causes the robot to put
the widget down at the specified location. In this manner, the
task execution module 110 can move widgets by first picking
them up and then putting them down, even though it was
taught these operations in a different order during training.
More complex tasks, such as, e.g., tasks involving weighing
and sorting objects, may include many more steps, which
may, similarly, be taught in any order without affecting proper
execution of the task at a later time.

[0086] Another example that illustrates the flexibility of
task execution in various embodiments involves a robot that
has been trained to pick up widgets from a conveyor belt with
its left arm and place them within reach of its right arm, and
to then pick up the widgets with the right arm and place them
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in a box. If, during performance of this task, a person places
an objectin the location where the right arm picks up widgets,
the robot packs that object as well, as long as it can visually
identify the object as a widget. In this way, the robot is able to
opportunistically respond to its environment.

[0087] Accordingly, various embodiments of the present
invention provide a high degree of flexibility in training and
operating robots to perform tasks such as moving and
manipulating objects. Once the robot has been taught all the
individual components of or items relevant to the task (e.g.,
the primitive tasks corresponding to required robot motions,
the object to be manipulated, etc.), the robot can operate
autonomously. Its actions are triggered when it sees the
objects it has been trained to manipulate. Since it uses com-
puter vision to move the robot arm and hand to the exact
location of the object, it is, generally, able to operate in a
world where the positions of the robot and the objects vary.
Further, since it only acts on objects that it recognizes, it is
able to operate in a cluttered environment, where objects are
constantly coming and going, by distinguishing objects irrel-
evant to its task from objects with which it has been trained to
interact. The robot can also adjust its operation to parameters
of objects in the environment. For example, when its task
involves picking up objects from a conveyor belt, the robot
tracks the objects on the moving belt visually, and grasps
them accurately independently of the speed of the conveyor
belt, its orientation, and even the direction in which it is
operating.

[0088] Moreover, since the robot has been trained to
respond to particular circumstances, it is need not slavishly
follow a particular sequence of operations. It continuously
senses the world around it via the external sensors 104, and
adapts its actions accordingly based on an evaluation of the
pre-conditions and post-conditions associated with the
instantiated behaviors. For example, if a person intercedes
and removes an object from the robot’s gripper, the robot
senses that change and does not continue to move as though
an object were there. Instead, it returns to the part of the task
that is conditioned upon an empty gripper, e.g., by moving to
the location where it expects to find new objects to grasp.
System and methods in accordance herewith do, of course,
not necessarily preclude specifying a particular order of
operations if it is desired to constrain the robot’s execution of
a task in this manner. In some embodiments, the user has the
opportunity to specify the sequence of primitive tasks during
training, either by adhering to the sequence when teaching the
individual primitive tasks, or—if the primitive tasks are
taught in an arbitrary order during training—by entering the
order directly via the user interface (e.g., by adjusting a num-
bered list of the primitive tasks displayed on the screen).
Alternatively, the order of steps that make up the complex task
may be hard-coded into a prototype of the complex task.
[0089] The robot control system also has built-in error
checks, as well as programmed methods for recovering from
many possible detectable errors, eliminating the need for the
trainer to show the robot how to handle error conditions.
Unless the trainer includes specific error-handling procedures
in the training (which she may want to do under certain
circumstances), the robot uses its defaults, and is able to
continue to operate safely and recover from errors.

[0090] The terms and expressions employed herein are
used as terms and expressions of description and not of limi-
tation, and there is no intention, in the use of such terms and
expressions, of excluding any equivalents of the features
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shown and described or portions thereof. In addition, having
described certain embodiments of the invention, it will be
apparent to those of ordinary skill in the art that other embodi-
ments incorporating the concepts disclosed herein may be
used without departing from the spirit and scope of the inven-
tion. In particular, embodiments of the invention need not
include all of the features or have all of the advantages
described herein. Rather, they may possess any subset or
combination of features and advantages. Accordingly, the
described embodiments are to be considered in all respects as
only illustrative and not restrictive.

What is claimed is:

1. A robot trainable, via interactions with a human trainer,
to manipulate objects, the robot comprising:

at least one appendage for manipulating an object;

a controller for operating the at least one appendage;

a computer memory for storing a library of prototypes, at
least one of the prototypes defining a type of task to be
performed by the appendage, the task comprising at least
one of'a movement of the appendage or a manipulation
of the object;

a perception system for receiving physical input from the
human trainer related to the task; and

atraining module for creating an instance of the at least one
prototype by specifying at least one attribute thereof
based on the physical input; and

a task-execution module for executing the instance of the
prototype via commands to the controller, thereby caus-
ing the appendage to perform the task.

2. The robot of claim 1, wherein the instance defines the
task in terms of generic, spatially unspecified motions of the
appendage.

3. The robot of claim 2, wherein the instance defines the
task in terms of motions of the appendage relative to at least
one of the object or an environment thereof.

4. The robot of claim 2, wherein the motions are defined
without specifying spatial trajectories.

5. The robot of claim 1, wherein the physical input com-
prises at least one of mechanical input or visual input.

6. The robot of claim 1, further comprising at least one
output device responsive to the training module for providing
task-related feedback to the trainer.

7. The robot of claim 6, wherein the feedback comprises at
least one of an indication of robot status, a request for further
input, or an error alert.

8. The robot of claim 6, wherein the feedback comprises
graphics overlaid onto a robot camera view.

9. The robot of claim 1, wherein the perception system
comprises at least one of a pressable button, a knob, a touch-
sensitive pad, a touch-sensitive cuff, or a camera.

10. The robot of claim 1, wherein the library of prototypes
further comprises prototypes defining at least one of an object
class, a type of equipment, or a location.

11. The robot of claim 10, wherein the training module
creates an instance of the object class based on visual input
about a member of the class.

12. The robot of claim 10, wherein the object subject to the
manipulation is a member of a class of objects referenced by
the instance.

13. The robot of claim 1, wherein the perception system is
further configured to receive physical information about the
object or an environment thereof.
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14. The robot of claim 1, wherein the controller is config-
ured to operate in zero-force gravity-compensated mode in
response to a physical input.

15. A method of robot learning based on interactions with
a human trainer, the method comprising:

receiving physical input from the trainer regarding a task to

be performed by the robot;

in response to and based at least in part on the input,

selecting a prototype associated with the task from a
library of stored prototypes, and creating and storing, in
a database, an instance of the prototype, the instance
specifying at least one of a robot movement or a robot
manipulation to be performed on the object.

16. The method of claim 15, further comprising specifying
at least one attribute of the instance based on the physical
input.

17. The method of claim 15, wherein the instance defines
the task in generic, spatially unspecified terms.

18. The method of claim 15, wherein the physical input
comprises at least one of mechanical input or visual input.

19. The method of claim 15, wherein receiving physical
input comprises sensing physical contact with at least one of
the trainer or an object.
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20. The method of claim 15, wherein receiving physical
input comprises tracking a position of a robot appendage as
the appendage is being moved by the trainer.

21. The method of claim 15, wherein receiving the physical
input comprises acquiring an image of at least one of the
trainer, the object, or an environment.

22. The method of claim 15, further comprising providing
feedback to the trainer.

23. The method of claim 22, wherein the feedback com-
prises at least one of indicating a status of the robot, request-
ing additional input from the trainer, or alerting the trainer to
an error.

24. The method of claim 22, wherein providing feedback
comprises overlaying graphics onto a robot camera view.

25. The method of claim 22, wherein the feedback com-
prises haptic feedback.

26. The method of claim 22, further comprising, in
response to and based at least in part on the input, selecting a
prototype defining an object class and instantiating the pro-
totype so as to create a representation of the object in memory.
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