1. Modify the MATLAB queue simulation program to model an M/G/1 queue. The server process uses a Weibull distribution with the following probability density function:

\[f(t) = \left(\frac{B}{\alpha} \right) \left(\frac{t}{\alpha} \right)^{\beta-1} \exp \left(-\left(\frac{t}{\alpha} \right)^{\beta} \right), t \geq 0 \]

and \(f(t) = 0 \) elsewhere, where \(\lambda = 0.05 \), \(\mu = 0.06 \), \(\sigma = 4 \). Corresponding to the given values of \(\mu \) and \(\sigma \), the parameters of the Weibull probability density function are \(\alpha = 18.2094 \), and \(\beta = 4.7516 \).

Compare the behavior of this queue to the M/M/1 queue using the same values of \(\lambda \) and \(\mu \). Approximate the Weibull distribution using a triangular distribution as discussed in class.