LAURA CORNELL

Robert L. Glass

Programmer

Evolving a New Theory of
Project Success

Regardless of how “troubled” a project may be, what is learned after
crossing the finish line can be a practitioner’s overwhelming success.

Ask the Man Who Owns One”
—ADVERTISING SLOGAN FOR
THE PACKARD AUTOMOBILE

lot has been written over

the years about software

project failure. Youd think
by now there was nothing new to
say on the topic. But I have
recently read a study that sheds
important new light on failure.
I'd like to share it with you.

You already know what's old
about this topic. Popular-press
articles about spectacular failed
projects. Hand-wringing articles
about how software projects are
always over budget, behind
schedule, and don’t work. Books
about projects that fail, includ-
ing Ed Yourdon’s Death March,
and my own Soffware Runaways.
The articles and books may or
may not be sympathetic to the
software project personnel (most
authors see software practitioners
as “bumbling”). But the prevalent
theme in most literature is usually
some sort of variation on “ain it
awful.” Software project failure is
frequent and lamentable, these
writings say.

So it may surprise you, as it did
me, that one author found some-

thing new to say about software
project failure. This is one of those
“why didn' I think of that?” studies.
The study is by a newcomer to
software literature. Kurt R. Lin-

berg is a software practitioner who
is also working on a Ph.D. in
computing. His study has not yet
been published, but it will be in
Elsevier’s Journal of Systems and
Software, early in 2000.

What did Linberg say that was
new? He decided to confront the

software developers on a failed
project and ask for their percep-
tions on what had happened. And
what he found—to his amazement,
to my fascination, and to the sur-
prise of many who will read his
work—is that the project partici-
pants declared this failed project
to be one of the most successful
they had ever worked on.

I can imagine the over-
whelming mix of reactions to
this description of Linberg’s

work. You may be thinking,

“No wonder we have failed pro-
jects— software practitioners can't
tell success from failure.” You may
be thinking, “I knew it was high
time we did a better job of defin-
ing success and failure.” Or you
may be thinking, “What a classic
case of employee/employer rela-
tionship breakdown; what the
employers see as failure, the
employees see as success.” But
none of these reactions quite cap-
ture Linberg discovery. The
uniqueness of both the questions
Linberg asked, and the answers he
acquired are what make his study
so fascinating.

Let’s set the stage here for an
elaboration of Linberg’s findings.
The project was the develop-

COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. | | 17

This was no poster child for project failure,

but it was a project hardly anyone in upper

management could brag about.

ment of software for a medical
instrument, one used by medical
professionals to perform proce-
dures.

The practitioners were experi-
enced and application-knowledge-
able, averaging two years of
post-graduate education, with
64% having more than five years
of software development experi-
ence and a background, on aver-
age, of 14 prior projects.

What went wrong on the
project? It was over budget by
419%. It was over schedule by
193% (27 months vs. 14 esti-
mated). It was over size estimates
by 130% for its software compo-
nent and 800% for its firmware
component. By all the usual mea-
suring sticks, one could consider
this to be a troubled project. It is
important to note that there was
no catastrophic failure here; the
project was eventually completed,
did what it was supposed to do,
and possessed the required “no
post-release software defects.” In
other words, this was no poster
child for project failure, but it was
a project hardly anyone in upper
management could brag about.

It is important for me to state
here I consider this project closer
to the typical software project
than the runaway successes or the
abject failures that we are so used
to reading about. Missing cost and
schedule targets but building soft-
ware that works may correspond
to failure on two of the three cri-
teria used for the “software crisis”
definition, but these two are (in

my opinion, perhaps controver-
sial) the least important criteria.
(We will return to my thoughts
after we examine what the practi-
tioners on this particular project
told Linberg.)

What Linberg did next is what
leads us to the surprise in his find-
ings. He asked each of the eight
project participants to describe the
most successful software project
they had ever worked on. Five of
the eight said their most successful
project was, in fact, this so-called
troubled one on which they were
currently working. Furthermore,
the remaining three project partic-
ipants named the present project
as the second-most successful
project on which they had ever
worked. In other words, the
project participants saw their cur-
rent project, which we have
already identified as “troubled”
and two-thirds of the way to
being a “software crisis” project, as
a success. What on earth was
going on here?

It’s important to examine why
the project participants saw the
project as a success. First of all,
they said the product worked the
way it was supposed to work. Sec-
ond, developing it had been a
technical challenge. And third,
their team was small and high-
performing.

One team member said “it was
the most successful because of
what we accomplished.” Another
said, “I enjoyed the people I
worked with,” and that “it was the
best-managed [project] I've ever

18 November 1999/Vol. 42, No. || COMMUNICATIONS OF THE ACM

worked on.” Why was it the best
managed project? Because the
team was given the freedom to
develop a “good design.” Because
there was no “scope creep” as the
project evolved. Because “I never
felt pressure from schedule.”

Linberg also asked the team
participants about the least suc-
cessful project they had ever
worked on. The participants
recalled projects where they were
urged by management to “achieve
dates no matter what.” “We all
said it was not possible” to achieve
schedule, said another, but man-
agement “kept on adding people.”

Even on this “most successful”
but troubled project, there were
problems. The participants were
particularly upset that manage-
ment tried to thwart their need to
obtain expert help on such mat-
ters as the capabilities of hardware
and software platforms. They
spoke of clandestine meetings
between themselves and the
experts, conducted not with the
support of, but rather in spite of,
their management. Management
thought the experts’ time was too
valuable to be interrupted for
those purposes. The experts, as it
turned out, disagreed. They even
worked weekends to provide help
to the team outside the scrutiny of
the managers in question.

It’s in the next set of Linberg’s
findings, I think, that is the heart
of the matter. He asked the partic-
ipants for their perceptions about
why their project was late. They
were quite definite in their
answers. The schedule expecta-
tions, they said, were unrealistic.
There was a lack of resources
(remember the problem with
obtaining expert advice). There
was a poor understanding of the

project’s scope at the outset, espe-
cially regarding the firmware. The
project started late. In other
words, the project was troubled,
these participants believed, not
because of things that happened
along the way, but because of what
happened at the outset—poor
schedule estimates, poor under-
standing of the problem to be
solved, poor understanding of the
resources needed.

Now Id like to return to the
personal aside that I mentioned
earlier. Software’s problems, these
practitioners say, are about expec-
tations established at the outset of
a project much more than they are
about trouble that happens along
the way. I think this is a profound
finding, and one that I whole-
heartedly support. The important
finding is that the software field
needs not better ways of building
software—as computer scientists
and software engineer academics
so frequently advocate—but better
ways of approaching the building
of software. More accurate and
honest estimates. More under-
standing of the complexity of
scope. More expert help.

We have already seen a pro-
found difference of opinion
between management and team
members about what constitutes
success—and failure. Near the end
of Linbergs article is a fascinating
table outlining these practitioners’
own definitions of success and fail-
ure. First of all, these practitioners
note, a project can be a success
whether it is completed or can-
celed. Success, in their eyes, has to
do with their learning experience
on the project. If they learned
something that can be applied to a
future project, they say, then a
project is a success. Its nice, they

Programmer

emphasize, if the cost and schedule
performance are comparable to
normal industry achievement
(note that they specifically avoid
linking this to project estimates),
but success has to do with what
the participants learned along the
way.

Now it would be easy to con-
clude this column by wringing
one’s hands about those “cowboy”
programmers who refuse to con-
form to management expectations
and continue to do and see things
in their own ways. In my opinion,
however, that would be the wrong
conclusion to draw from Linberg’s
findings. These practitioners, I
assert, tell us something we all need
to hear. Linberg himself says it best:
“A new theory of software project
success may be necessary.” This
new theory may need to include
realistic expectations, placing
importance on a quality product,
and organizational congruency.

I believe, as I announced at the
inception of this column a couple
of years ago, in software’s practice
and software’s practitioners. When
in doubt, it is best to go to practice
to identify questions and to find
answers about how practice might
be improved. (Hence the Packard
slogan at the beginning of this col-
umn.) Linberg does an exceptional
job of doing just that. I hope we
have more researchers who will fol-
low in his footsteps. H

ROBERT L. GLASS (rglass@indiana.edu) is
the publisher/editor of The Software Practitioner
newsletter and editor of Elsevier’s Journal of
Systems and Software.

© 1999 ACM 0002-0782/99/1100 $5.00

COMMUNICATIONS OF THE ACM November 1999/Vol. 42, No. | |

19

