CSCI 5432 - DESIGN AND ANALYSIS OF ALGORITHMS

Description:

The objective of this course is to cover a variety of concepts in Algorithm Design and Analysis. Topics include divide and conquer, the greedy method, backtracking, branch and bound, dynamic programming, NP-completeness, and graph algorithms.

Pre-requisites: a graduate or undergraduate level course in Algorithm Design plus knowledge of a high level programming language.

Audience:
This course is designed for students in the graduate program in computer science.

Instructor: Saïd Bettayeb, Ph.D
Professor, Computer Science and Computer Information Systems
Ph. 283-3857
Rm. Delta 166
Email: Bettayeb@uhcl.edu

Office Hours: Office Hours: Mon. 1:00-3:00 pm
 Tues. 12 -1:00 pm
 Wed. 7:00 - 8:00 pm
 Thurs. by appointment.

Teaching Assistant: Ms. Ramya Gaddam.
 Monday: 12.00PM - 4.00PM
 5.00PM - 9.00PM
Tuesday: 10.00 AM - 1.00PM
Thursday: 7.00PM - 10.00PM

e-mail: GaddamR6942@uhcl.edu

Required Reading

Title: Introduction to Algorithms
3rd Edition

Authors: Cormen, Leiserson, Rivest and Stein

Publisher: McGraw Hill
ISBN: 978-0-262-03384-8

Recommended Reading

Title: Computers and Intractability: A Guide to the Theory of NP Completeness

Authors: Michael R. Gary and David S. Johnson

Publisher: W.H. Freeman and Company
ISBN: 0-7167-104407

Grading Policy:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>35%</td>
<td>October 17, 2011</td>
</tr>
<tr>
<td>Final Exam</td>
<td>45%</td>
<td>December 5, 2011</td>
</tr>
<tr>
<td>Homework Assignments</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>And Quizzes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 - 100</td>
<td>A</td>
</tr>
<tr>
<td>88 - 92</td>
<td>A-</td>
</tr>
<tr>
<td>83 - 87</td>
<td>B+</td>
</tr>
<tr>
<td>79 - 82</td>
<td>B</td>
</tr>
<tr>
<td>75 - 78</td>
<td>B-</td>
</tr>
<tr>
<td>71 - 74</td>
<td>C+</td>
</tr>
<tr>
<td>66 - 70</td>
<td>C</td>
</tr>
<tr>
<td>60 - 65</td>
<td>C-</td>
</tr>
<tr>
<td>50 - 59</td>
<td>D</td>
</tr>
<tr>
<td>49 and below</td>
<td>F</td>
</tr>
</tbody>
</table>
Late homework are accepted for the first two days after their due date with a 10% penalty per day or until the solution is handed out, whichever comes first.

No cell phone calls are permitted. Cell phones are to be turned off during class.

No make-up for missed quizzes under any circumstances.

Specification of Course and Objectives

Statement of General Goals and Objectives:

The student learns a variety of concepts in algorithm design and analysis. Topics include divide and conquer, the greedy method, backtracking, branch and bound, dynamic programming, graph algorithms, NP-completeness, approximation algorithms, and randomized algorithms. Focus on analysis techniques including amortized analysis.

Upon completion of this course, students will be able to:

- Understand the concepts of algorithm design
- Use rough and amortized analysis of algorithms
- Understand classic graph problems and algorithms such as spanning trees, shortest paths, topological sorts, maximum flow in networks
- Design solutions to moderately complex to complex problems using the techniques learnt.
- Understand basic issues in program complexity (i.e., P-class, NP-class, and NP-complete class problems). Learns when no algorithm is possible (undecidable problems)

COURSE OUTLINE

Weeks 1&2: August 22-Sept. 2, 2011:
 Analyzing and designing algorithms (Ch. 1-5)

Weeks 3&4: Sept 5-16, 2011:
 Dynamic Programming (Ch. 15)

Week 5: Sept. 21-23, 2011:
 The Greedy Method (Ch. 16)

Week 6: Sept. 26-Oct. 3, 2011:
 Amortized Analysis (Ch. 17)

Week 7: Oct. 3-10, 2011:
 Graph Algorithms (Ch.22-24)

Week 8: October 17, 2011
 Midterm Exam
Weeks 9, 10 & 11: Oct. 24- Nov. 7, 2010:
 Graph Algorithms (Cont) (Ch. 25, 26)

Weeks 12 & 13: Nov. 7 -21, 2011:
 Number Theoretic Algorithms and NP-completeness (Ch. 31, 34)

Week 13-14: Nov. 28, 2011
 Approximation algorithms: Traveling salesman and set covering. (Ch. 35)

Week 15: Dec. 5, 2011:
 Final Exam